[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] [obm-l] Conjuntos numéricos na Reta...



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (6.90 hits, 5 required)
SPAM: IN_REP_TO          (-0.8 points) Found a In-Reply-To header
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: NOSPAM_INC         (-0.2 points) Where are you working at?
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: MSG_ID_ADDED_BY_MTA_2 (0.1 points)  'Message-Id' was added by a relay (2)
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 179.205.234.200.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 179.205.234.200.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: MISSING_OUTLOOK_NAME (1.1 points)  Message looks like Outlook, but isn't
SPAM: AWL                (0.9 points)  AWL: Auto-whitelist adjustment
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

Como é que sabemos que os conjuntos já conhecidos são suficientes para
representar números da Reta Real ? Existe alguma prova de que eles são
necessários e sufucientes ?

Explico:

Temos os naturais
Depois estendemos o conceito para os inteiros...
Depois os racionais...
Depois os irracionais...

Bom, que me garante que não há número, na reta, que não se enquadre em
qualquer desses conjuntos ?

Há algum teorema "mágico" que diga isso, como existe o maravilhoso Teorema
de Gödel sobre a inconsistência da lógica ?


[]s

---
Paulo C. Santos (PC)
e-mail: paulo@xxxxxxxxxxxx
Homepage: http://uniredes.org
Tel.: (21) 2510.8783 - Cel.: (21) 8753-0729
--------------------------------------------
MS-Messenger: Uniredes_Br@xxxxxxxxxxx


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================