[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SPAM] Re: [obm-l] outra tangente a curva
SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam. The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM:
SPAM: Content analysis details: (7.30 hits, 5 required)
SPAM: IN_REP_TO (-0.8 points) Found a In-Reply-To header
SPAM: REFERENCES (-0.5 points) Has a valid-looking References header
SPAM: USER_AGENT (-0.5 points) Found a User-Agent header
SPAM: X_MAILING_LIST (-0.3 points) Found a X-Mailing-List header
SPAM: FROM_ENDS_IN_NUMS (0.9 points) From: ends in numbers
SPAM: SPAM_PHRASE_00_01 (0.8 points) BODY: Spam phrases score is 00 to 01 (low)
SPAM: QUOTED_EMAIL_TEXT (-0.8 points) BODY: Contains what looks like a quoted email text
SPAM: RCVD_IN_DSBL (3.2 points) RBL: Received via a relay in list.dsbl.org
SPAM: [RBL check: found 238.105.13.201.list.dsbl.org]
SPAM: RCVD_IN_ORBS (2.2 points) RBL: Received via a relay in orbs.dorkslayers.com
SPAM: [RBL check: found 72.254.107.143.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points) RBL: Received via a relay in relays.osirusoft.com
SPAM: [RBL check: found 72.254.107.143.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points) RBL: DNSBL: sender is Confirmed Open Relay
SPAM:
SPAM: -------------------- End of SpamAssassin results ---------------------
Tio Cabri st wrote:
Boa noite, será que alguém entre uma ceia e outra poderia me auxiliar nesta:
Determine uma reta paralela a x+y=1 (daqui extraio que esta reta tem
coeficiente angular -1) e tangente à curva y^3 +xy+ x^3=0 em um ponto
(x0,y0), com x0<0 e y0<0.
Reposta: x + y = -1
Obrigado Cabri
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================
Derivando implicitamente a equação, você obtém:
3y^2.y' + y + x.y' + 3x^2 = 0
y'.(3y^2 + x) = -(3x^2 + y)
y' = - (3x^2 + y)/(3y^2 + x)
Buscamos o ponto onde a inclinação (derivada) tem valor -1.
y' = -1
ou seja,
- (3x^2 + y)/(3y^2 + x) = -1
3x^2 + y = 3y^2 + x
3x^2 - 3y^2 + y - x = 0
3(x^2 - y^2) - 1(x - y) = 0
3(x + y)(x - y) - 1(x - y) = 0
(x - y).(3x + 3y -1) = 0
Logo
(A) x - y = 0
E a intersecção de x - y = 0 com
y^3 + xy + x^3 = 0 é o ponto (-1/2; -1/2)
ou
(B) 3x + 3y - 1 = 0
impossível, pois como x + y = 1/3, não podemos ter ambas coordenadas
negativas.
A reta tangente, com inclinação -1 que passa pelo ponto (-1/2; -1/2) é:
x + y = -1
Pio.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================