| 
       Se a + b + c = 
0 e   a^2 + b^2 + c^n = 1  , 
então            
          a^4 + b^4 + c^4 
= ? 
(a + b + c)^2 = 0 = a^2 + b^2 + c^2 + 2 (ab + bc + ac)  
0 = a^2 + b^2 + c^2 + 2 (ab + bc + ac)  
a^2 + b^2 + c^n = 1 
0 = 1+ 2 (ab + bc + ac)  
(ab + bc + ac) = -1/2 
(ab + bc + ac)^2 = 1/4 
( (ab)^2 + (bc)^2 + (ac)^2 + 2 ( abcb + aabc + abcc )) = 1/4 
( (ab)^2 + (bc)^2 + (ac)^2 + 2abc (a + b + c) ) = 1/4 
( (ab)^2 + (bc)^2 + (ac)^2 + 2abc (0) ) = 1/4 
( (ab)^2 + (bc)^2 + (ac)^2 ) = 1/4 
(a^2 + b^2 + c^2)^2=1^2 
a^4 + b^4 + c^4 + 2((ab)^2 + (bc)^2 + (ac)^2)=1 
a^4 + b^4 + c^4 + 2(1/4)=1 
a^4 + b^4 + c^4 + 1/2=1 
a^4 + b^4 + c^4 =1/2 
Longo mas funcional... rsrs espero q esteja certo. 
Abraços 
MuriloRFL 
  |