[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] RES: [obm-l] questão do Munkres
Outra forma de ver que a integral eh zero eh observar que o integrando so eh
diferente de zero em um conjunto cuja medida de Lebesgue eh nula.
Artur
-----Mensagem original-----
De: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em
nome de Lista OBM
Enviada em: segunda-feira, 9 de maio de 2005 16:35
Para: Lista OBM
Assunto: [obm-l] questão do Munkres
Gostaria que vocês dessa uma olhada se o problema
abaixo, tirado do livro do James R. Munkres (Analysis
on Manifolds) estah errado.
Seja f:[0,1]x[0,1] --> R uma função definida por:
f(x,y) = 0 se x<>y e f(x,y) = 1 se x=y. Prove que f é
integrável sobre [0,1]x[0,1].
Digo isso porque qualquer partição P que tomarmos para
[0,1]x[0,1], tem-se que s(f,R) = 0 e S(f,R) = 1, para
todo sub-retângulo R da partição P. Isso significa que
a integral inferior de f vale 0 enquanto a superior
vale 1 (sobre [0,1]x[0,1], é claro!).
Obs.: Esta é a questão 3 da pág. 90.
grato desde já, éder.
____________________________________________________Yahoo! Mail, cada vez
melhor: agora com 1GB de espaço grátis! http://mail.yahoo.com.br
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================