[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Principio das Gavetas





>From: Marcio M Rocha <ddcristo@bol.com.br>
>>>   > Aproveitando a oportunidade, gostaria de uma sugestão no
>>problema
>> > seguinte: "Prove que em qualquer seqüência de 39 números naturais
>> > consecutivos existe ao menos um número cuja soma dos algarismos é
>> > divisível por 11."
>> >
>>Esse parece interessante. Acho que vale a pena fazer umas simulações no 
>>Excel pra ver se você acha alguma periodicidade ou lei de formação. Se eu 
>>achar alguma coisa te falo.
>>  []s,
>>Claudio.
>>

Seja N um numero terminado em 0 onde o algarismo das desenas nao e 9

Seja a = (soma dos algarismos de N) mod 11
A sequencia de 'mod 11's pelos proximos 9 numeros seria

a+1, a+2, a+3, a+4, a+5, a+6, a+7, a+8, a+9

Se a=0 o problema ja estaria resolvido, se a>=2, nessa sequencia tb
teriamos um multiplo de 11, logo o pior caso e a=1
mas continuando a sequencia de 'mod 11's: o numero seguinte terminaria
em zero e seria a+1 (mod 11).  Os nove numeros da sequencia ja sabemos:
a+2, a+3, a+4, a+5, a+6, a+7, a+8, a+9, a+10.  Ou seja, em 19 numeros
em sequencia, nessas condicoes teremos certamente um multiplo de 11.

A questao e agora quantos numeros em sequencia sao necessarios pra
chegarmos em N?  E facil ver que na pior das hipoteses N seria o 20o de
uma sequencia de numeros naturais.  Nada impede que exista um multiplo
de 11 no meio, mas em 39 numeros teriamos obrigatoriamente no pior caso:
19 numeros quaisquer, N=a(mod11), e a sequencia de 19 numeros acima.

Acho que e isso nao?


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================