É pra provar que isso vale para todo n inteiro positivo?
 
Espero que não, pois 2^2^2^2 = 2^2^4 = 2^16 = 65536  e  2^2^2 = 2^4 = 16.
Mas 65536 - 16 = 65520 não é divisível por 1989.
 
Além disso, esta questão não caiu na IMO de 1989, como seria de se esperar, e nem estava na "shortlist", pelo menos segundo o site do John Scholes.
 
Em qual IMO foi e qual o enunciado correto?
 
[]s,
Claudio.
 
| De: | 
owner-obm-l@mat.puc-rio.br | 
 
| Para: | 
obm-l@mat.puc-rio.br | 
 
| Data: | 
Fri, 25 Jun 2004 15:35:58 +0000 | 
 
| Assunto: | 
[obm-l] Correção | 
 
> Eu mandei uma questão errada pra lista eu estou corrigindo agora ...
> 
> A questão certa é : Prove q o numero ( n^n^n^n - n^n^n ) é divisivel por 
> 1989.
> 
> Essa questão é da IMO e eu gostaria de saber a resolução!
> 
> Abraços
> 
> Daniel Regufe
> 
> _________________________________________________________________
> MSN Hotmail, o maior webmail do Brasil. http://www.hotmail.com
> 
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>