[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] Olimp�adas ao redor do mundo...



On Tue, Apr 22, 2003 at 10:06:16PM -0400, Korshinoi@aol.com wrote:
> Problema: Um polin�mio quadr�tico de coeficientes inteiros e coeficiente do 
> segundo grau igual a 1 assume valores primos em tr�s valores inteiros e 
> consecutivos. Mostre que ele assume um valor primo em pelo menos mais um 
> valor inteiro.

O problema � um pouco enganador, parece que est� perguntando algo dif�cil mas...

O polin�mio � da forma P(x) = x^2 + bx + c. Vamos dividir em casos:

b �mpar:

A identidade P(-b-x) = P(x) garante que cada valor de P(n)
aparece exatamente duas vezes. Se temos tr�s valores inteiros de n
para os quais P(n) � primo tem que existir um quarto.

b par:

Transladando em x podemos supor que os tr�s valores primos s�o
P(-1), P(0), P(1). Observe que
P(x+1) - P(x) = 2x + 1 + b,
(P(x+2) - P(x+1)) - (P(x+1) - P(x)) = 2.
P(n) alterna entre valores pares e �mpares. A �nica forma de termos 3 primos
consecutivos � portanto, usando as observa��es acima,

P(-1) = 3, P(0) = 2, P(1) = 3

Neste caso P(x) = x^2 + 2 e P(3) = 11.

[]s, N.
=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================