[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Re: sugest�o



Mais uma vez concordo com o Alexandre.

Esclarecimento historico:
Andrew Wiles: matematico que demonstrou o grande teorema de Fermat.
Andre Veil: matematico frances que fez parte do grupo Bourbaki.
Hermann Weyl: matematico alemao, um dos ultimos da escola de Goettingen,
que acabou desbaratada a partir de 1933, com a ascensao do nazismo.
JP

-----Mensagem original-----
De: alexv@esquadro.com.br <alexv@esquadro.com.br>
Para: obm-l@mat.puc-rio.br <obm-l@mat.puc-rio.br>
Data: Sexta-feira, 18 de Agosto de 2000 09:54
Assunto: Re: Re: sugest�o


>Estive pensando (ihhh...) um pouco sobre esse neg�cio de quest�es triviais
>e quest�es dif�ceis, sen�o vejamos:
>
>Eu encaro da seguinte forma:  N�o h� quest�o, qualquer que seja o seu
>n�vel, que n�o mere�a aten��o de alunos ou professores. Se um leitor a
>considerar elementar para o seu n�vel de conhecimento ele deve se lembrar
>que ao emitir coment�rios, sugerir leituras sobre o assunto ou mesmo
>mostrar o caminho da solu��o, ele estar� ajudando: 1)� quem enviou �
>d�vida; 2)estar� ajudando a tantos outros que talvez ainda n�o tenham
>percebido que possuem a mesma d�vida; 3) por �ltimo estar� no m�nimo
>exercitando, mesmo que sem perceber, os seus conhecimentos.
>Caso a quest�o seja de n�vel superior ao conhecimento de um leitor, isso
>deve servir de incentivo, motiva��o, para que ele procure aprender um
>pouco mais, mesmo que gradualmente, sobre os assuntos relacionados �
>quest�o.
>
>Voc�s j� pensaram se o Ralph , O Gugu , o Nicolau  (at� aqui j� s�o 4
>medalhas de ouro em IMO's), O Eduardo Wagner, O Morgado, e tantos outros,
>simplemente resolvessem pensar " Ahh, essa quest�o � trivial demais para o
>meu n�vel... vou ignor�-la" quando encontrassem quest�es que para eles
>fossem elementares, mas que para n�s n�o s�o??  O que seria dessa nossa
>discuss�o em matem�tica?.
>
>Por outro lado, Andrew Weil (� assim??) conheceu o Teorema mais famoso do
>mundo (lembram, o �ltimo de Fermat.) com apenas 10 anos de idade, e o
>perseguiu a vida toda. Ou seja, ele desenvolveu matem�tica exatamente por
>ter se defrontado com um problema que ele (e todo mundo, literalmente!)
>simplesmente n�o consegui resolver. E se ele tivesse, como tantos fizeram,
>desistido por pensar " Ahhh.. isso est� bem acima do meu n�vel!". Mas n�o,
>ele preferiu encara de outra forma,aprendeu matem�tica gradualmente e isso
>era apenas o come�o da brincadeira.
>
>Eu quando era do prim�rio ficava fascinado com o pessoal do gin�sio porque
>eles somavam x e y e encontram n�meros como resposta. Eu ainda n�o sabia
>nada sobre o assunto, e pra mim aquilo parecia dif�cil. Acho que foi por
>isso que resolvi estudar matem�tica...
>
>Era isso... desculpem o tempo tomado!
>
>[]'s,
>Alexandre Vellasquez
>
>
>
>>se algu�m acha um problema muito dif�cil, pode simplesmente ignor�-lo; se
>>o acha trivial, pode descart�-lo da mesma forma. E se algu�m quiser propor
>>um problema para as duas listas? Ent�o todos aqueles que se inscreverem
>>nas duas listas receber�o uma mensagem em duplicata.
>>
>>Essa � a minha opini�o.
>>
>
>