Nesta �ltima se��o apresentaremos algumas tabelas indicando os maiores primos conhecidos no momento da conclus�o do livro (14 de junho de 1999). Lembramos (veja a introdu��o) que existe um n�mero de Mersenne, maior do que todos estes, cuja primalidade estava sendo checada no momento de imprimir este livro.
C>
Primo | No de d�gitos | Descobridores |
2^3021377-1 | 909526 | Clarkson, Woltman, Kurowski & al. (GIMPS) |
2^2976221-1 | 895932 | Spence, Woltman & al. (GIMPS) |
2^1398269-1 | 420921 | Armengaud, Woltman & al. (GIMPS) |
2^1257787-1 | 378632 | Slowinski, Gage |
2^859433-1 | 258716 | Slowinski, Gage |
2^756839-1 | 227832 | Slowinski, Gage |
302627325 2^530101+1 | 159585 | Nash, Dunaieff, Burrowes, Jobling, Gallot |
481899 2^481899+1 | 145072 | Morii, Gallot |
361275 2^361275+1 | 108761 | Smith, Gallot |
302442855 2^336211+1 | 101219 | Nash, Dunaieff, Burrowes, Jobling & Gallot |
Lembramos que quando p e p+2 s�o ambos primos, dizemos que eles s�o primos g�meos.
Primo | No de d�gitos | Descobridores |
361700055 2^39020 1 | 11755 | Henri Lifchitz |
835335 2^39014 1 | 11751 | Ballinger & Gallot |
242206083 2^38880 1 | 11713 | J�rai & Indlekofer |
40883037 2^23456 1 | 7069 | Lifchitz & Gallot |
843753 2^22222 1 | 6696 | Rivera & Gallot |
7485 2^20023 1 | 6032 | Buddenhagen & Gallot |
8182815 2^17838 1 | 5377 | Smith & Gallot |
570918348 10^5120 1 | 5129 | Harvey Dubner |
697053813 2^16352 1 | 4932 | J�rai & Indlekofer |
37442007 2^15440 1 | 4656 | Hanson & Gallot |
Seja , chamado o primorial de n,
o produto de todos os n�meros primos menores ou iguais a n.
Usamos tamb�m a nota��o
, com k pontos de exclama��o,
para o produto
dos inteiros positivos
menores ou iguais a n e c�ngruos a n m�dulo k.
Um primo da forma
� chamado primorial
e um primo da forma
� chamado multifatorial.
Primo | No de d�gitos | Descobridores |
6917!-1 | 23560 | Caldwell & Gallot |
6380!+1 | 21507 | Caldwell & Gallot |
42209#+1 | 18241 | Caldwell & PrimeForm |
14614!!!!+1 | 13632 | Charles F. Kerchner III |
10830!!!+1 | 13000 | Charles F. Kerchner III |
3610!-1 | 11277 | Chris Caldwell |
3507!-1 | 10912 | Chris Caldwell |
24029#+1 | 10387 | Chris Caldwell |
23801#+1 | 10273 | Chris Caldwell |
11915!!!!!+1 | 8681 | Charles F. Kerchner III |
Lembramos que p � dito um primo de Sophie Germain se 2p+1tamb�m � primo e que Mp � composto para estes valores de pse
.
Este nome � usado porque Sophie Germain
provou o primeiro caso do �ltimo teorema de Fermat
(recentemente demonstrado completamente por Wiles)
para primos p desta forma.
Primo | No de d�gitos | Descobridores |
18458709.2^32611-1 | 9825 | Kerchner & Gallot |
14516877.2^24176-1 | 7285 | Kerchner & Gallot |
72021.2^23630-1 | 7119 | Yves Gallot |
2375063906985.2^19380-1 | 5847 | J�rai & Indlekofer |
276311.2^19003+1 | 5726 | Ballinger & Gallot |
92305.2^16998+1 | 5122 | Kerchner & Gallot |
8069496435.10^5072-1 | 5082 | Harvey Dubner |
470943129.2^16352-1 | 4932 | J�rai & Indlekofer |
157324389.2^16352-1 | 4931 | J�rai & Indlekofer |
5415312903.10^4526-1 | 4536 | Harvey Dubner |
Primo | No de d�gitos | Data | Descobridores |
2^17-1 | 6 | 1588 | Cataldi |
2^19-1 | 6 | 1588 | Cataldi |
2^31-1 | 10 | 1772 | Euler |
999999000001 | 12 | 1851 | Loof |
(2^59-1)/179951 | 13 | 1867 | Landry |
(2^53+1)/(3 107) | 14 | 1867 | Landry |
2^127-1 | 39 | 1876 | Lucas |
(2^148+1)/17 | 44 | 1951 | Ferrier |
180(2^127-1)^2+1 | 79 | 1951 | Miller & Wheeler |
2^521-1 | 157 | 1952 | Robinson |
2^607-1 | 183 | 1952 | Robinson |
2^1279-1 | 386 | 1952 | Robinson |
2^2203-1 | 664 | 1952 | Robinson |
2^2281-1 | 687 | 1952 | Robinson |
2^3217-1 | 969 | 1957 | Riesel |
2^4423-1 | 1332 | 1961 | Hurwitz |
2^9689-1 | 2917 | 1963 | Gillies |
2^9941-1 | 2993 | 1963 | Gillies |
2^11213-1 | 3376 | 1963 | Gillies |
2^19937-1 | 6002 | 1971 | Tuckerman |
2^21701-1 | 6533 | 1978 | Noll & Nickel |
2^23209-1 | 6987 | 1979 | Noll |
2^44497-1 | 13395 | 1979 | Nelson & Slowinski |
2^86243-1 | 25962 | 1982 | Slowinski |
2^132049-1 | 39751 | 1983 | Slowinski |
2^216091-1 | 65050 | 1985 | Slowinski |
91581 2^216193-1 | 65087 | 1989 | Amdahl Six |
2^756839-1 | 227832 | 1992 | Slowinski & Gage |
2^859433-1 | 258716 | 1994 | Slowinski & Gage |
2^1257787-1 | 378632 | 1996 | Slowinski & Gage |
2^1398269-1 | 420921 | 1996 | Armengaud, Woltman, et. al. [GIMPS] |
2^2976221-1 | 895932 | 1997 | Spence, Woltman, et. al. [GIMPS] |
2^3021377-1 | 909526 | 1998 | Clarkson, Woltman, Kurowski, et. al. [GIMPS, PrimeNet] |
Primo | No de d�gitos | Data | |
1 | 2^3021377-1 | 909526 | 1998 |
2 | 2^2976221-1 | 895932 | 1997 |
3 | 2^1398269-1 | 420921 | 1996 |
4 | 2^1257787-1 | 378632 | 1996 |
5 | 2^859433-1 | 258716 | 1994 |
6 | 2^756839-1 | 227832 | 1992 |
7 | 302627325 2^530101+1 | 159585 | 1999 |
8 | 481899 2^481899+1 | 145072 | 1998 |
9 | 361275 2^361275+1 | 108761 | 1998 |
10 | 302442855 2^336211+1 | 101219 | 1998 |
11 | 9 2^304607+1 | 91697 | 1998 |
12 | 3 2^303093+1 | 91241 | 1998 |
13 | 7 2^283034+1 | 85203 | 1998 |
14 | 27253 2^272347-1 | 81990 | 1998 |
15 | 67234^16384+1 | 79096 | 1999 |
16 | 262419 2^262419+1 | 79002 | 1998 |
17 | 9183 2^262112+1 | 78908 | 1997 |
18 | 111113277 2^250132+1 | 75306 | 1998 |
19 | 22695 2^247131+1 | 74399 | 1999 |
20 | 217807 2^243537-1 | 73318 | 1999 |
21 | 5 2^240937+1 | 72530 | 1997 |
22 | 982451707 2^239848+1 | 72211 | 1998 |
23 | 25229 2^238652-1 | 71846 | 1998 |
24 | 73 2^227334+1 | 68437 | 1999 |
25 | 127 2^220417-1 | 66355 | 1999 |
26 | 29 2^219317+1 | 66023 | 1999 |
27 | 391581 2^216193-1 | 65087 | 1989 |
28 | 2^216091-1 | 65050 | 1985 |
29 | 3 2^213321+1 | 64217 | 1997 |
30 | 5 2^209787+1 | 63153 | 1997 |
31 | 7 2^207084+1 | 62340 | 1998 |
32 | 132599 2^206032-1 | 62027 | 1999 |
33 | 331139 2^201240-1 | 60585 | 1999 |
34 | 281143 2^187639-1 | 56491 | 1999 |
35 | 81 2^185745+1 | 55917 | 1999 |
36 | 15 2^184290+1 | 55478 | 1998 |
37 | 60541 2^176340+1 | 53089 | 1997 |
38 | 39781 2^176088+1 | 53013 | 1997 |
39 | 73 2^171854+1 | 51736 | 1998 |
40 | 127 2^170393-1 | 51296 | 1999 |
41 | 159821 2^168770-1 | 50811 | 1999 |
42 | 48833 2^167897+1 | 50547 | 1999 |
43 | 74269 2^167546+1 | 50442 | 1999 |
44 | 2 3^105106+1 | 50149 | 1999 |
45 | 285 2^165957+1 | 49961 | 1998 |
46 | 111253 2^165379-1 | 49790 | 1999 |
47 | 21 2^164901+1 | 49642 | 1999 |
48 | 1002774^8192+1 | 49162 | 1999 |
49 | 27923 2^158625+1 | 47756 | 1997 |
50 | 3 2^157169+1 | 47314 | 1995 |
51 | 325859 2^156148-1 | 47011 | 1999 |
52 | 285 2^155637+1 | 46854 | 1998 |
53 | 111763 2^155551-1 | 46831 | 1999 |
54 | 291 2^154544+1 | 46525 | 1999 |
55 | 151023 2^151023-1 | 45468 | 1998 |
56 | 19 2^149146+1 | 44899 | 1998 |
57 | 9 2^149143+1 | 44898 | 1995 |
58 | 185767 2^149009-1 | 44862 | 1999 |
59 | 256267 2^148941-1 | 44842 | 1999 |
60 | 165 2^147953+1 | 44541 | 1999 |
61 | 29 2^147316-1 | 44348 | 1999 |
62 | 9 2^147073+1 | 44275 | 1995 |
63 | 9 2^145247+1 | 43725 | 1995 |
64 | 29 2^144937+1 | 43632 | 1999 |
65 | 178747 2^144789-1 | 43592 | 1999 |
66 | 231 2^143949+1 | 43336 | 1998 |
67 | 165 2^143437+1 | 43182 | 1998 |
68 | 180924^8192+1 | 43070 | 1999 |
69 | 143018 2^143018-1 | 43058 | 1998 |
70 | 333 2^142307-1 | 42842 | 1998 |
71 | 190229 2^141576-1 | 42624 | 1999 |
72 | 63 2^141497+1 | 42597 | 1999 |
73 | 203 2^141477+1 | 42592 | 1999 |
74 | 285 2^141253+1 | 42524 | 1998 |
75 | 150152^8192+1 | 42407 | 1999 |
76 | 288759 2^140001+1 | 42150 | 1999 |
77 | 165 2^139459+1 | 41984 | 1998 |
78 | 126308^8192+1 | 41791 | 1999 |
79 | 81 2^138239+1 | 41616 | 1998 |
80 | 122463 2^137752+1 | 41473 | 1998 |
81 | 111850^8192+1 | 41359 | 1999 |
82 | 245 2^136993+1 | 41242 | 1999 |
83 | 130297 2^136645-1 | 41140 | 1999 |
84 | 70175 2^135753+1 | 40871 | 1998 |
85 | 438523 2^135415-1 | 40770 | 1999 |
86 | 203 2^135125+1 | 40679 | 1999 |
87 | 105 2^133443+1 | 40173 | 1998 |
88 | 71852^8192+1 | 39784 | 1999 |
89 | 2^132049-1 | 39751 | 1983 |
90 | 63 2^131325+1 | 39535 | 1999 |
91 | 2 3^82780+1 | 39497 | 1999 |
92 | 10038165 2^131040+1 | 39454 | 1997 |
93 | 5581 2^131000+1 | 39439 | 1999 |
94 | 577294575 2^130639+1 | 39336 | 1999 |
95 | 195 2^130388+1 | 39253 | 1998 |
96 | 63 2^130221+1 | 39203 | 1999 |
97 | 91 2^130140+1 | 39179 | 1999 |
98 | 577294575 2^129917+1 | 39118 | 1999 |
99 | 65 2^129925+1 | 39114 | 1999 |
100 | 113 2^129845+1 | 39090 | 1999 |
Obs: um primo � dito de Cullen se � da forma
,
de Woodall se � da forma
e Fermat generalizado se � da forma
a2n + 1.