[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Elipse
Caros,
estava tentando calcular a area de uma elipse. De maneira bastante simples, pensei o seguinte:
+ACI-Considerando os dos raios extremos da elipse, o maior e o menor, como R e r respectivamente, percebi que a elipse era uma circunferencia esticada. Entao vi que a razao de um quarto da circunferencia para o quadrado exterior a ela, ou seja:
+AF8AXwBfAF8AXwBfAF8AXwBfAF8-
+AHw---------- +AHw-
+AHw- +AFw- +AHw-
r +AHw- +AFw- +AHw-
+AHw- +AFw- +AHw-
+AHwAXwBfAF8AXwBfAF8AXwBfAF8AXAB8-
r
Nao parece mas eh uma circunferencia. Entao eu pensei que se eu puxasse, esticasse a circunferencia para a direita, a razao entre a area da elipse formada e o retangulo exterior a ela, deveria ser a mesa que a area da circunferencia com relacao ao quadrado+ACI-
Dai, vem que ( pi+ACo-r+AF4-2 )/(r+AF4-2)+AD0- (Elipse)/(r+ACo-R), e disso concluindo que:
Area da elipse +AD0- pi+ACo-R+ACo-r
A ideia eh boa, acho. Mas perguntei para o meu professor do colegio, e ele me disse que eu devia usar integral e a formula da area nao era tao simples assim.
Porem eu usei o MatGraf e desenhei elipses e mandei o programa calcular a integral, e comparei com o resultado da minha formula, que surpresa+ACE-
Elipse (R,r) Integral Pi+ACo-R+ACo-r
(3,4) 18.84 18.849555
(1,3) 4.71 4.712388
Estou felizao da vida.
Isso esta certo? Ou eh so aparencia?
duda