[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: RES: [obm-l] integral
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: RES: [obm-l] integral
- From: "Ivan lopes" <lopesivan.del@xxxxxxxxx>
- Date: Thu, 11 Oct 2007 03:48:02 -0300
- DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; bh=gBzHoVT6fhLfC5diFP3SllxfrlMxITAj/sOBw/oEkp4=; b=tNtVlLvq0C2wT9P3xuQzLCA+qxDfwzBTt36HZXynYgOLonfnvTmzbDb0B1oClxOlE2+JgX53IAC2+upZeuWCUybVx8Ynm6/uq7s62HLGWWKYiKL0WLWQh9DpYvWeAip5c0R4RhJPqWv/9KuoVc0zkmpEESKGdG+FRF4fLn6Apkw=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=jNZ+PzWOz1emBPrgeqbaZPfZEqsBgabBCIqD2eeiVBbexIysL3fz1tzY6auGNTTkr7DDXayJoZEh0QUZ1gG3rEedx9G5ZtYvdbGoVy/r5t8JObk3bVNGHo0w8+0hkD1Igsrju1u5kGMRiWYwdyBK1vG5FWHTURqJLrss2Z07XAQ=
- In-Reply-To: <BAY106-F25A76BA86CEF3063860EB4B6A60@phx.gbl>
- References: <4706A2D400084B17@mail04.sc2.he.tucows.com> <BAY106-F25A76BA86CEF3063860EB4B6A60@phx.gbl>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
f(t) = t/(1 - sqrt(2) t - t^2)
zeros
=====
1 - sqrt(2) t - t^2 = 0
-> 1 - sqrt(2) t - t^2
-> t^2 + sqrt(2) t - 1 = 0
t1 = [sqrt(6) - sqrt(2)]/2
t2 = -[sqrt(6) + sqrt(2)]/2
retornando a quacao inicial
f(t) = t/(1 - sqrt(2) t - t^2)
f(t) = t/[(t-t1)(t-t2)]
decompondo em fracoes parciais ...
f(t) = A/(t-t1) + B/(t-t2)
A = lim(t,t1) (t-t1)f(t) = lim(t,t1) t/(t-t2) = t1/(t1-t2)
B = lim(t,t2) (t-t2)f(t) = lim(t,t2) t/(t-t1) = t2/(t2-t1)
entao:
f(t) = A/(t-t1) + B/(t-t2)
-> integrate f(t)dt = integrate [A/(t-t1)]dt +
integrate [B/(t-t2)]dt
-> integrate f(t)dt = A.integrate [1/(t-t1)]dt +
B.integrate [1/(t-t2)]dt
-> integrate f(t)dt = A.ln[(t-t1)] + B.ln[(t-t2)]
substituindo A e B, pelos seus respectivos valores, temos:
-> integrate f(t)dt = {t1/(t1-t2)}ln(t-t1) +
{t2/(t2-t1)}ln(t-t2)
-> integrate f(t)dt = {t1/(t1-t2)}ln(t-t1) -
{t2/(t1-t2)}ln(t-t2)
-> integrate f(t)dt = {1/(t1-t2)}ln(t-t1)^t1 -
{1/(t1-t2)}ln(t-t2)^t2
-> integrate f(t)dt = {1/(t1-t2)}{ ln(t-t1)^t1 - ln(t-t2)^t2 }
-> integrate f(t)dt = {1/(t1-t2)}{ ln [(t-t1)^t1]/(t-t2)^t2 }
----------------------------------------
----------------------------------------
----------------------------------------
Pohhhh cara, tu mudou o problema ????? hahahahhaha!!!!!!
f(t) = t/(1 - sqrt(2)t + t^2)
temos que:
1 - sqrt(2)t + t^2
-> t^2 - sqrt(2)t + 1
-> t^2 - sqrt(2)t + 1/2 + 1/2
-> t^2 - 2[sqrt(2)/2]t + 1/2 + 1/2
-> (t - sqrt(2)/2)^2 + 1/2
f(t) = t/[(t - sqrt(2)/2)^2 + 1/2]
sendo r = t - sqrt(2)/2
dr = dt
t = r + sqrt(2)/2
substituindo, temos
f(t) = t/[(t - sqrt(2)/2 )^2 + 1/2]
f(r) = (r + sqrt(2)/2)/[(r + sqrt(2)/2 - sqrt(2)/2)^2 + 1/2]
-> f(r) = (r + sqrt(2)/2)/(r^2 + 1/2)
-> f(r) = r/(r^2 + 1/2) + (sqrt(2)/2)/(r^2 + 1/2)
obs:
#1 integrate r/(r^2 + 1/2) dr = ln(r^2 + 1/2)
como r = t - sqrt(2)/2,
integrate r/(r^2 + 1/2) dr = ln(t^2 - sqrt(2) + 1)
#2 integrate (sqrt(2)/2)/(r^2 + 1/2) dr =
(sqrt(2)/2) integrate [ 1/(r^2 + 1/2)] dr =
(sqrt(2)/2) arctan (r^2)/(1/2) =
(sqrt(2)/2) arctan 2(t -sqrt(2)/2)^2
resposta:
integrate f(t) = ln(t^2 - sqrt(2) + 1) + (sqrt(2)/2) arctan 2(t -sqrt(2)/2)^2
obs:
tem um programa muito legal chamado maxima, ele pode te ajudar nesse tipo de
questao.
exemplo:
$ echo "integrate(t/(1-sqrt(2)*t +t^2),t);"| maxima -q
(%i1) 2
log(t - sqrt(2) t + 1) 2 t - sqrt(2)
(%o1) ----------------------- + atan(-------------)
2 sqrt(2)
(%i2)
referencias:
http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA/PartialFraction/PartialFraction.html
http://en.wikipedia.org/wiki/Table_of_derivatives
http://en.wikipedia.org/wiki/Table_of_integrals
http://wxmaxima.sourceforge.net/wiki/index.php/Main_Page
http://maxima.sourceforge.net/
[]'s
Ivan Carlos Da Silva Lopes
UFRJ/Cornell
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================