[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Uma PAG
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Uma PAG
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Thu, 20 Sep 2007 17:26:27 -0300
- DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; bh=EwTKWAsgE9W6tDLP2b9HaWAET3SGDKWOsD6nWcQU5VU=; b=XyjuweKkdpRsjQVw2hiHj3VOTF7FU8X7roshRF5vHqnJYxznY3H7LdVTqgEDy/Ik/fmM8LrxAgbFiXtKLM/42fuO9BXcAYE8FT9wN49K3cAiWDWslYVYECTJUamFwLrXbssAw9P9X04ecnupSsAvGJdXvi2Arp7OvvQ9KgQ8It0=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=IoY/IzKuXQCZ8mtVe2c/hVXrHQw4Z5WTmHfWgwJuKP+Nno6knVaExWj1oK3yGG3OxCilhsff8uTp6Da35qEacHbPhtg7UwyGPjOrqr1V/i9p9QpxvtrsYPiguvgnpUzhsNbjpZJ9qm/fvzUd+01NNCZ/lVAwSmfmvTdW5/Jjs2Y=
- In-Reply-To: <JOOKHG$143DB104BB72AFD952D80586BCF9761C@uol.com.br>
- References: <JOOKHG$143DB104BB72AFD952D80586BCF9761C@uol.com.br>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Olá Vitório,
veja que existe um pequeno truque aqui:
Sn = 1 + 2x + 3x^2 + ... + nx^(n-1) = d/dx (x + x^2 + ... + x^n)
Sn = d/dx [ x(x^n-1)/(x-1) ]
agora basta derivar para obter o resultado..
um abraço,
Salhab
On 9/20/07, vitoriogauss <vitoriogauss@uol.com.br> wrote:
> Calcule a soma Sn=1+2x+3x^2+...+nx^n-1
>
> Eu cheguei ao seguinte resultado:
>
> Sn= (1 - (n+1)x^n + nx^n+1 ) / ( 1 - x )^2
>
> Estou correto????
>
>
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================