[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

RE: [obm-l] função lipschitz



=> f e funcao de Lipchitz, entao, existe C > 0 tal que , para x,y em I temos

                            |f(x)-f(y)| =< c . |x-y|

Portanto, |(f(x)-f(y))/(x-y)| =< c, o que prova que f' e limitada.

<= A volta e imediata. Supondo f' limitada, entao, existe c > 0 tal que 
|(f(x)-f(y))/(x-y)| =< c , entao, |f(x)-f(y)| =< c . |x-y|. f e Lipchitz.

Alem disso, f e uniformemente continua tambem!

Regards,

Leandro Recova
Los Angeles, CA.


>From: "Kleber Bastos" <kleber09@gmail.com>
>Reply-To: obm-l@mat.puc-rio.br
>To: obm-l@mat.puc-rio.br
>Subject: [obm-l] função lipschitz
>Date: Fri, 27 Jul 2007 21:30:54 -0300
>
>Poderiam me ajudar ?
>
>Mostre que f :I-->R, onde I C R  é um intervalo é uma função Lipschitz se ,
>e smomente se f ´ ( f linha )  é uma função limitada em I .
>
>--
>Kleber B. Bastos


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================