[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Dúvida
On Thu, Jun 21, 2007 at 02:20:54PM -0300, ralonso wrote:
> > Assim a, b, c são as raízes de x^3 - x^2 - x - 1 = 0.
> > Podemos observar que a seqüência p_n = a^n+b^n+c^n satisfaz
> > p_(n+3) = p_(n+2) + p_(n+1) + p_n
>
> Olá Professor Nicolau. Como você consegui enxergar que
> p_(n+3) = p_(n+2) + p_(n+1) + p_n ? Suponho que você está
> considerando que p(n) = x^n e x^3 = x^2 + x + 1. Assim p(n+1) =
> x^3 + x^2 + x. Mas ainda não consegui enxergar por que isso é válido, pois
> x pode ser a, b ou c. A confusão surge porque x tem que ser o mesmo nos dois
> lados da equação. Ficaria grato se o senhor pudesse explanar melhor
> essa passagem.
Temos
a^3 = a^2 + a + 1 donde a^(n+3) = a^(n+2) + a^(n+1) + a^n
b^3 = b^2 + b + 1 donde b^(n+3) = b^(n+2) + b^(n+1) + b^n
c^3 = a^2 + a + 1 donde c^(n+3) = c^(n+2) + c^(n+1) + c^n
Somando,
a^(n+3) + b^(n+3) + c^(n+3) = (a^(n+2) + b^(n+2) + c^(n+2)) +
+ (a^(n+1) + b^(n+1) + c^(n+1)) + (a^n + b^n + c^n)
que é o mesmo que
p_(n+3) = p_(n+2) + p_(n+1) + p_n
[]s, N.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================