On 5/10/07, Jorge Luis Rodrigues e Silva Luis <jorgelrs1986@hotmail.com> wrote:
Perdão! O enunciado correto da questão abaixo é o seguinte: Achar sem
efetuar as operações, o resto da seguinte expressão
4372*1454+8134^2+526*338^3 por 9. Resp: 8
Na verdade acho que algumas operações devem ser efetuadas.
Para um número ser divisível por 9 a soma de seus dígitos também deve ser (é fácil verificar considerando um número com uma quantidade de dígitos N e separando as bases das potências de 10 com 9+1).
O resto da divisão do número por 9 será o resto da divisão da soma por 9. Portanto:
4372 mod 9 = (4+3+7+2) mod 9 = 7
1454 mod 9 = (1+4+5+4) mod 9 = 5
8134 mod 9 = (8+1+3+4) mod 9 = 7
526 mod 9 = (5+2+6) mod 9 = 4
338 mod 9 = (3+3+8) mod 9 = 5
Assim, (4372*1454+8134^2+526*338^3) mod 9 = (7*5 + 7*7 + 4*5*5*5) mod 9 = (35 + 49 + 500) mod 9 = 584 mod 9 = 17 mod 9 = 8
A propósito, quantos números inteiros entre 10 e 1000 possuem seus dígitos
em ordem estritamente crescente?
Os números 12 e 21 seriam duas das permutações para números de dois dígitos e conta-se apenas o 12 já que 21 não possui seus dígitos em ordem estritamente crescente. Assim, calculamos o número de combinações de 9 dígitos 2 a 2 e 3 a 3 (o dígito 0 não é necessário):