[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] questão de polinomios
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] questão de polinomios
- From: "Renan Kruchelski Machado" <renankmachado@xxxxxxxxx>
- Date: Sat, 14 Apr 2007 03:07:24 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=uONF4byvJo+WYS3TFE2eQ51VaPXpOxmpANS7/CYCwC3jv5gd9VHGVB7UF7TmIaWDr8GC1+mbLQWSE+IJwR3oevH0Qv1zN+YTe4DIKZ7ae2c6oLrEc+aD49atq42xVqLnMnbSoJoz0z+0iwiMSGSMaH3HG4qnoh/yFKU6auQBKEk=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=ADcBhEFpbvoZT4nqkyNQgORcYhJKGtnEXbUi+DzYOqWzfvEjmwjHWOEAbvGl3MX31cuhjDrIAr4DRy21yH7HEbDkL96EqxgSOqHQdG3cMh6LoSZDQpwXqwyrIlDna95nzYErvTYPk7QzZ2fPn8j7JWu9DuRjnTshqwi0ImUXP9A=
- In-Reply-To: <ec6a55d90704131712r20c76a2wee94d7ac2931345a@mail.gmail.com>
- References: <ec6a55d90704131712r20c76a2wee94d7ac2931345a@mail.gmail.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
1, x2, ..., xn sao raizes de x^n - 1 = 0, ou seja, de (x - 1)(x^(n-1) + x^(n-2) + ... + x + 1) = 0.
Assim, se fizermos Q(x) = x^(n-1) + x^(n-2) + ... + x + 1, as raizes de Q(x) = 0 serao as mesmas que as de x^n - 1 = 0, exceto o 1 ==> Q(x) = (x - x2)(x - x3)...(x - xn).
Entao eh soh calcular Q(1) = (1 - x2)(1 - x3)...(1 - xn) = n
Em 13/04/07, Julio Sousa <juliosousajr@gmail.com> escreveu:
Sejam 1, x2, x3, x4, ... , xn as raizaes de x^n=1. Calcule: (1-x2)*(1-x3)*...*(1-xn).
--
Atenciosamente
Júlio Sousa