[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] o menor valor
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] o menor valor
- From: "Ronaldo Alonso" <ronaldo.luiz.alonso@xxxxxxxxx>
- Date: Fri, 30 Mar 2007 19:11:35 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=Ti2Celqs2STTwWIx+5QSswj2usAvZvPETAUYRcXWrZCE8XgUywnhBnwPgbxoZkRxGwkXDAu11nDR8gvEe9+P1/OBwyYC1d7sayUvJbgIoxrfebvElpFfejJ+JkK1Q0Ii5oKs9lip5dMxsiWnjxS1oFj0yfZIEoU6bo0qqVI8Le4=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=ak8StVAhccHGKutU/JB/ELq3oyURUD1mC5vZ9jaIh1+LCi8w4CcvQiht0+UUYeb6dHQRAhdZOy1Z2j1R2d0uclsbulzl3ukP4XNd1EQ1K+9LyMQC0wU+7VuhdmYmHkyZHcgvVoBh4GSWOuWc94OLIBsSkXN6lzzmglpw69Aa4Lo=
- In-Reply-To: <JFMYTI$FF8EBC2253735EBD52C42D9557BDF64B@multidominios>
- References: <JFMYTI$FF8EBC2253735EBD52C42D9557BDF64B@multidominios>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Olá Cláudio. Obrigado pela referência, vou dar uma olhada.
Eu mesmo confesso que não sei porque o método funciona.
On 3/28/07, claudio.buffara <claudio.buffara@terra.com.br> wrote:
> Infelizmente, a maioria das pessoas que usa multiplicadores de Lagrange
> segue apenas uma receita de bolo, sem ter a menor
> ideia de por que o metodo funciona. Uma boa explicacao encontra-se no cap. 4
> do livro Analise Real - vol.2 do Elon Lages Lima,
> publicado pelo Impa.
>
> No entanto, nesse caso, dah pra fazer com matematica do ensino medio:
>
> Como x^2+y^2=1, o problema eh minimizar 2y-6x+1 sujeita a x^2+y^2=1.
> Uma ideia razoavel eh fazer x = cos(t), y = sen(t) e cair no problema:
> Minimizar f(t) = 2*sen(t) - 6*cos(t) + 1 =
> raiz(40)*(sen(t)*(2/raiz(40)) - cos(t)*(6/raiz(40))) + 1 =
> raiz(40)*sen(t-a) + 1, onde cos(a) = 2/raiz(40) e sen(a) = 6/raiz(40).
>
> O valor minimo de f(t) ocorre quando sen(t-a) = -1 ==>
> f(t) = 1 - raiz(40) = 1 - 2*raiz(10).
> Nesse caso, t - a = -pi/2 + 2kpi ==> t = a - pi/2 + 2kpi ==>
> x = cos(t) = cos(a - pi/2) = sen(a) = 3/raiz(10)
> y = sen(t) = sen(a - pi/2) = -cos(a) = -1/raiz(10)
>
> []s,
> Claudio.
>
>
> ---------- Cabeçalho original -----------
>
> De: owner-obm-l@mat.puc-rio.br
> Para: obm-l@mat.puc-rio.br
> Cópia:
> Data: Wed, 28 Mar 2007 13:43:52 -0300
> Assunto: Re: [obm-l] o menor valor
>
> > Ah... só mais uma coisa... esqueci o link:
> >
> > http://en.wikipedia.org/wiki/Lagrange_multipliers
> >
> >
> > On 3/28/07, Ronaldo Alonso <ronaldo.luiz.alonso@gmail.com> wrote:
> > >
> > > Só pra complicar um pouco, essa dá para resolver com cálculo
> > > usando multiplicadores de Lagrange, isto é minimizar o valor
> > > de uma função sujeita a uma restrição.
> > > No caso a função é f(x,y) = x^2 + y^2 - 6x + 2y e a restrição é
> > > g(x,y) = x^2 + y^2 = 1
> > >
> > > Vc forma uma função auxiliar h(x,y) = f(x,y) - lambda * g(x,y)
> > > Faz as derivadas parciais de h(x,y) iguais a zero, calcula lambda usando
> o
> > > vínculo
> > > e substitui os valores de x e y que fazem com que tornam h mínimo (para
> > > isso vc tem
> > > que resolver um sisteminha.
> > >
> > > Alguém se habilita a usar esse esquema para conferir a resposta?
> > >
> > > []s a todos.
> > >
> > >
> > >
> > >
> > > On 3/26/07, vitoriogauss <vitoriogauss@uol.com.br> wrote:
> > > >
> > > > legal essa maneira ...gostei
> > > >
> > > >
> > > > > Já que vc. gosta de G.A. (brincadeira) pode considerar a primeira
> > > > equação como a de uma circunferência centrada em O, de raio unitátio,
> e
> > > > procurar o raio de outra com centro em (3,-1) que tangencia a
> primeira.
> > > > >
> > > > > Deve obter o menor valor como 1 - sqrt10
> > > > >
> > > > > []s
> > > > >
> > > > > vitoriogauss <vitoriogauss@uol.com.br> escreveu:
> > > > > se x^2 + y^2 = 1, o menor valor de x^2 + y^2 - 6x + 2y é
> > > > >
> > > > > Vitório Gauss
> > > > >
> > > > >
> > > > >
> > > >
> =========================================================================
> > > > > Instruções para entrar na lista, sair da lista e usar a lista em
> > > > > http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> > > > >
> > > >
> =========================================================================
> > > > >
> > > > >
> > > > > __________________________________________________
> > > > > Fale com seus amigos de graça com o novo Yahoo! Messenger
> > > > > http://br.messenger.yahoo.com/
> > > >
> > > > Vitório Gauss
> > > >
> > > >
> > > >
> > > >
> =========================================================================
> > > > Instruções para entrar na lista, sair da lista e usar a lista em
> > > > http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> > > >
> > > >
> =========================================================================
> > > >
> > >
> > >
> > >
> > > --
> > > ---------------------------------------------------------
> > > Analista de Desenvolvimento
> > > Conselho Regional de Engenharia, Arquitetura e Agronomia de SP.
> >
> >
> >
> >
> > --
> > ---------------------------------------------------------
> > Analista de Desenvolvimento
> > Conselho Regional de Engenharia, Arquitetura e Agronomia de SP.
> >
> >
>
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>
--
---------------------------------------------------------
Analista de Desenvolvimento
Conselho Regional de Engenharia, Arquitetura e Agronomia de SP.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================