Olá,
S(n) = f(1) + f(2) + f(3) + ... + f(n)
Assim,
S(n) = n^2 f(n)
S(n-1) = (n-1)^2 f(n-1)
Logo, S(n) - S(n-1) = f(n) = n^2 f(n) -
(n-1)^2 f(n-1)
Entao: f(n) = (n-1)^2 f(n-1) / [ n^2 - 1 ] =
(n-1) f(n-1) / (n+1)
Logo, f(n) = [ (n-1) / (n+1) ] *
f(n-1)
Deste modo:
f(n) = [ (n-1) / (n+1) ] * [ (n-2) / n ] * [ (n-3)
/ (n-1) ] * [ (n-4) / (n-2) ] * [ (n-5) / (n-3) ] * ... * [ (n - (n-2)) / ((n-2)
- 3) ] * [ (n - (n-1)) / ((n-1) - 3) ] * f(1)
f(n) = [ 1 / (n+1) ] * [ 1 / n ] * [ 2 ] * [ 1
] * f(1)
f(n) = f(1) * 2 / [ n * (n+1) ]
Assim, f(1996) = 1996 * 2 / [ 1996 * 1997 ] = 2 /
1997
abraços,
Salhab
|