[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] =?UTF-8?Q?integral,_coordenada_polar,_=C3=A1rea,_elipse?=
- To: obm-l@xxxxxxxxxxxxxx
- Subject: [obm-l] =?UTF-8?Q?integral,_coordenada_polar,_=C3=A1rea,_elipse?=
- From: =?UTF-8?Q?Lu=C3=ADs?= <arrepia@xxxxxxxxx>
- Date: Mon, 23 Jan 2006 16:27:59 -0300
- DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=byE/hwtfXBkA1iqImUMYoGs+Opdsfh07u40ksRqHHCSeEaPgurslAlCcOLrzaMvhvwrxwBmKAgvdBRRfvBqNVwcTfvV0kD5OSO0nvwz/R2qUvkJbFHHI+IjXpvRyJ0xFvKefm4WZfYXnDKeX/xp7qAd0+NZEq3lYNKwly7eqykg=
- In-Reply-To: <c895ddd50601191232n5e0c6b3bk@mail.gmail.com>
- References: <c895ddd50601191232n5e0c6b3bk@mail.gmail.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Calcular a área da elipse r(2 - cos@) = 6 em coordenadas polares.
pode-se demonstrar que
A = 1/2 integral de alfa até beta[ f(@)^2 d@]
assim, a área da elipse fica:
A = integral de zero até pi[ 36/(2 - cos@)^2 d@]
mas como resolver essa integral?
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================