[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: RES: [obm-l] PA e primos



Eu acho que ele queria o Teorema dos Numeros Primos (� esse o nome?)
que deve dizer
"Se a e r s�o primos entre si, ent�o a PA de termo inicial a e raz�o r
cont�m infinitos numeros primos", e do que eu lembro, este teorema n�o
� nem um pouco trivial. Mesmo para o caso a  = 1 ele � dificil (se eu
n�o me engano)

Abra�os
-- 
Bernardo Freitas Paulo da Costa


On 6/24/05, Artur Costa Steiner <artur.steiner@mme.gov.br> wrote:
> Isto eh falso (supondo-se uma PA em que os termos sao numeros inteiros).
> Considere, por exemplo, a PA dos numeros pares, a_n = 2*n, n=1,2,3..Nao eh
> constante e o unico termo primo eh 2.
> Artur
> 
> 
> -----Mensagem original-----
> De: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em
> nome de Felipe Takiyama
> Enviada em: sexta-feira, 24 de junho de 2005 14:40
> Para: OBM-lista
> Assunto: [obm-l] PA e primos
> 
> 
> Como provar que em uma PA n�o constante existem infinitos n�meros
> primos?(parece
> ser uma demonstra��o muito simples, embora eu n�o saiba nem como
> come�ar...).
> 
> Obrigado,
> Felipe
> 
> 
> ____________________________________________________________________________
> _______
> Que tal uma lupa para entender as ofertas que a concorr�ncia faz para
> liga��es
> DDD/DDI e acesso � Internet?
> Use a lupa da Embratel e descubra! www.falaserio21.com.br
> 
> =========================================================================
> Instru��es para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
> 
> =========================================================================
> Instru��es para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================