[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Funcoes complexas



Eu estou tentando provar a seguinte proposicao (acredito que seja mesmo
verdadeira), mas ainda naum consegui. Talvez alguem possa dar alguma
sugestao.

Sejam f e g funcoes complexas, definidas e analiticas no disco D ={z | |z|
<1}. Se f*g for identicamente nula em D, entao f =0 (identicamente nula em
D) ou g =0. Mostre que o requisito de que f e g sejam analiticas em D eh de
fato essencial para a conclusao.

Tentei desenvolver f e g em series de Taylor em torno da origem, mas naum m
cheguei aa conclusao citada.

Abracos
Artur

________________________________________________
OPEN Internet
@ Primeiro provedor do DF com anti-vírus no servidor de e-mails @


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================