i) Sendo | r(x) | £ [K|x-xo|n+1]/(n + 1)!, onde K > 0, prove que limn®¥ r(x) = 0;
ii) Seja f: I à R de classe C2. Dado a em I, defina g: I à R por g(x) = [f(x) – f(a)]/(x – a) se x ¹ a e g(a) = f´(a). Prove que g é de classe C1. Usando o pol. de Taylor com resto de Lagrange para f, cheguei que: limx®a g´(x) = [f´´(a)]/2 . Mas não estou conseguindo