[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] serie CONvergente!



Aqui vai, s� pra chatear o Dirichlet:
 
A primeira observa��o � que podemos trocar a base dos logaritmos de e para 2, pois 1/(n*ln(n)^r) = log_2(e)^r/(n*log_2(n)^r). Ou seja, a s�rie com logs naturais � apenas um m�ltiplo constante da s�rie com logs em base 2, de forma que ambas convergem ou ambas divergem.
 
Tomemos as reduzidas de ordem 2^n - 1 da s�rie com os logs na base 2:
S(2^n - 1) =
 
1/(2*log(2)^r) + 1/(3*log(3)^r) +
1/(4*log(4)^r) + ... + 1/(7*log(7)^r) +
...
1/(2^(n-1)*log(2^(n-1))^r) + ... + 1/((2^n - 1)*log(2^n - 1)^r) <
 
2/(2*log(2)^r) +
4/(4*log(4)^r) +
...
2^(n-1)/(2^(n-1)*log(2^(n-1))^r) =
 
1/log(2)^r + 1/log(4)^r + 1/log(8)^r + .... + 1/log(2^(n-1))^r =
 
1 + 1/2^r + 1/3^r + ... + 1/(n-1)^r =
 
reduzida de ordem n-1 da s�rie SOMA(k >= 1) 1/k^r, a qual sabemos que converge (se n�o soubermos, basta aplicar a mesma t�cnica de se tomar as reduzidas de ordem 2^n - 1 e agrupar os termos convenientemente que obteremos uma s�rie majorante geom�trica de raz�o (2/2^r) < 1 - essa sim temos certeza de que converge).
 
[]s,
Claudio.
 
 
De: owner-obm-l@mat.puc-rio.br
Para: obm-l@mat.puc-rio.br
C�pia:
Data: Fri, 16 Apr 2004 00:53:14 -0300
Assunto: Re: [obm-l] serie CONvergente!
   
> Poxa Johann, n�o fique triste...
>  
> se vc quiser pode tentar fazer essa:
>  
> "Prove que a s�rie de 1/[n.(log n)^r] converge para r>1" (S� lembrando que n�o vale usar integrais)... boa sorte!
>  
> Abra�os!!!
----- Original Message -----
From: Johann Peter Gustav Lejeune Dirichlet
To: obm-l@mat.puc-rio.br
Sent: Friday, April 16, 2004 12:16 AM
Subject: RE: [obm-l] serie divergente! (linda solu��o)
>
> Droga, eu tinha pensado nisso e corri desde o portao da USP so para escrever!!!
> A minha demo ficou parecida.A ideia e usar mesmo serie harmonica.De qualquer modo ta valendo vai...