[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re:[obm-l] Problema de Derivadas
---------- Início da mensagem original -----------
De: owner-obm-l@mat.puc-rio.br
Para: obm-l@mat.puc-rio.br
Cc:
Data: Sat, 10 Apr 2004 04:28:33 -0300 (ART)
Assunto: [obm-l] Problema de Derivadas
> Me ajudem no seguinte problema:
>
> -----------------
> a) Seja f(x) uma função que satisfaz |f(x)| <= x^2
> para [-1, 1]. Mostre que f é derivável em x = 0 e
> determine f'(0).
>
> b) Mostre que a função
>
> f(x) = x^2 * sen( 1/x ), para x != 0
> f(x) = 0, para x = 0
>
> é derivável em x = 0 e determine f'(0).
> -----------------
>
> Alguém poderia me mostrar, passo a passo, como se
> resolve esse tipo de problema?
>
> Valeu!
>
>
===========
Vou tentar ajudar a construir a solução:
a)
Se vc construir o gráfico , vai perceber que o único
ponto em que as condições
Lim f(x)[x->A+] = Lim f(x)[x->A-] = K , onde k é
constante é em A=0 .Se isso for suficiente para dizer
que a função é derivavel neste ponto , então a
derivada de f em Zero é Zero .Porque a tg a curva f(x)
em x = 0 é paralela ao eixo X , portanto é um pto de
máximo ou mínimo , no caso , mínimo .
Na letra b , eu não consegui enteder muito bem o
enunciado . Qual o D da função?
ABRAÇO
LUIZ H. BARBOSA
__________________________________________________________________________
Acabe com aquelas janelinhas que pulam na sua tela.
AntiPop-up UOL - É grátis!
http://antipopup.uol.com.br/
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================