[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

RE:RE: [obm-l] Ultimo Teorema de Fermat



Eu tenho uma solução realmente brilhante para esta proposição, mas a margem deste e-mail é muito estreito para contê-la!!!

Ass.: Gleydson...

-- Mensaje Original --
Enviado por: Artur Costa Steiner <artur@opendf.com.br>
Fecha: 08/04/2004 12:46:11
Para: <obm-l@mat.puc-rio.br>
Título: RE: [obm-l] Ultimo Teorema de Fermat

Na realidade, o colega provou um resultado mais geral do que o originalmente
enunciado. A desigualdade (1 + 1/u)^u > 2 vale para todo u>1. Concluimos que
naum existem numeros positivos x, y, z e n tais que x^n + y^n = z^n e tais
que x,y<=z-1<=n
Artur 

-----Original Message-----
From: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br] On
Behalf Of Claudio Buffara
Sent: Wednesday, April 07, 2004 8:26 PM
To: obm-l@mat.puc-rio.br
Subject: Re: [obm-l] Ultimo Teorema de Fermat

on 07.04.04 18:48, Domingos Jr. at dopikas@uol.com.br wrote:

>> Prove que nao existem inteiros positivos x, y, z e n, com n >= z, tais
> que:
>> x^n + y^n = z^n.
> 
> claramente x, y <= z-1
> logo x^n + y^n <= 2(z-1)^n
> supondo que existe solução nas condições acima:
> z^n <= 2(z-1)^n
> [z/(z-1)]^n <= 2
> mas
> [1 + 1/(z-1)]^n > [1 + 1/(z-1)]^(z-1)
> um fato conhecido é que (1 + 1/u)^u -> e quando u -> oo, e esta seqüência
é
> sempre maior que 2 para u > 1.
> 
> caso z-1 = 1, ou seja z = 2 fica claro que não há solução..
> 
> [ ]'s
> 
Legal!

A solucao que eu conhecia era:

Podemos supor s.p.d.g. que x <= y.
Assim, eh claro que x <= y < y+1 <= z <= n.

Logo:
x^n = z^n - y^n = 
(z - y)*(z^(n-1) + z^(n-2)*y + ... + y^(n-1)) >
(z - y)*(x^(n-1) + x^(n-1) + ... + x^(n-1)) >
1*n*x^(n-1) > 
x^n ==> contradicao.

[]s,
Claudio.


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================

Quer internet Grátis com qualidade e muito mais serviços? Escolha o Caminho Mais Curto! Ubbi free! baixe agora o discador - http://free.ubbi.com.br/


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================