[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Putnam Problems



Um da Putnam...



  ai and bi are constants. Let A be the (n+1) x
(n+1) matrix Aij, defined as follows: Ai1 = 1;
A1j = xj-1 for j ≤ n; A1 (n+1) = p(x); Aij
= ai-1j-1 for i > 1, j ≤ n; Ai (n+1) = bi-1
for i > 1. We use the identity det A = 0 to
define the polynomial p(x). Now given any
polynomial f(x), replace bi by f(bi) and p(x) by
q(x), so that det A = 0 now defines a polynomial
q(x). Prove that f( p(x) ) is a multiple of
∏ (x - ai) plus q(x). 


=====

TRANSIRE SVVM PECTVS MVNDOQVE POTIRI

CONGREGATI EX TOTO ORBE MATHEMATICI OB SCRIPTA INSIGNIA TRIBVERE

Fields Medal(John Charles Fields)




______________________________________________________________________

Yahoo! Mail - O melhor e-mail do Brasil! Abra sua conta agora:
http://br.yahoo.com/info/mail.html
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================