[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] re:Inequação do 3o grau



Essa eu fiz assim:

sqrt3(2x) - sqrt3(4) > 5x -25

Antes de mais nada eu prefiro a notacao:
sqrt(a) = raiz quadrada (ingl. square root)
cbrt(a) = raiz cubica (ing. cubic root)

Entao a inequacao eh:

cbrt(2x) - cbrt(4) > 5x - 25

(2x)^(1/3) - 4^(1/3) > 5(x - 5)

((2x)^(1/6))^2 - (2^(1/3)^)^2 > 5(x - 5)

Temos uma diferenca de quadrados, entao:

((2x)^(1/6) - 2^(1/3)) * ((2x)^(1/6) + 2^(1/3)) > 5(x - 5)

O primeiro membro eh multiplo de 5, logo terminara em 0 ou em 5!
Vamos analisar por inspecao, comecando com o caso 0 e pegando o primeiro fator depois eh soh verificar:

((2x)^(1/6) - 2^(1/3)) = 0

((2x)^(1/6) = 2^(1/3))

(2^(1/6))*(x^(1/6)) = 2^(1/3)

(x^(1/6)) = (2^(1/3)) / (2^(1/6))

(x^(1/6)) = 2^(1/6)

x=2

Substituindo na inequacao temos uma solucao sendo satisfeita !



************************************************************************************************

Sent: Monday, December 29, 2003 8:05 AM> Subject:
[obm-l] Inequação do 3o gráu


Qual a solução de

sqrt3(2x) - sqrt3(4) > 5x -25


sqrt3(2x) = raiz cúbica de 2x