Abaixo vão dois problemas da olimpíada de maio de 1999 que eu gostaria de saber as respostas: Obs: O problema 1 eu resolvi e achei apenas 1 par de tricúbicos consecutivos: 370 e 371. No entanto gostaria de confirmar se a resposta é essa.
Problema 1 Um número natural de três algarismos é chamado de tricúbico se é igual a soma dos cubos dos seus dígitos. Encontre todos os pares de números consecutivos tais que ambos sejam tricúbicos.
Problema 3 A primeira fileira da tabela abaixo se preenche com os números de 1 a 10, em ordem crescente.
A segunda fileira se preenche com os números de 1 a 10, em qualquer ordem. Em cada casa da terceira fileira se escreve a soma dos dois números escritos nas casas acima. Existe alguma maneira de preencher a segunda fileira de modo que os algarismos das unidades dos números da terceira fileira sejam todos distintos?
|