[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] ENQUETE - BELEZA MATEMATICA



Minhas escolhas são, como pedido, bem em nível de ensino médio e revelam 
minha admiração pela simplicidade e pela surpresa.

1) O conjunto dos primos eh infinito. Incluído pela beleza da prova de 
Euclides.
2) Desigualdade das médias aritmética e geométrica. Incluída pela beleza 
da prova de Cauchy.
3) As alturas de um triângulo concorrem em um mesmo ponto. (Sei que vão 
achar surpreendente essa minha indicação, mas é um resultado que 
conhecemos desde pequenos e, em geral, não nos damos conta de quão 
surpreendente ele é, nem tampouco da engenhosidade da demonstração.)
4) O problema dos pontos. Pela beleza da solução de Fermat.
5) São apenas 5 os poliedros regulares. (Outro que, em geral, não nos 
damos conta de quão surpreendente ele é.)

Claudio Buffara wrote:

>Caros colegas da lista:
>
>Gostaria de contar com sua participacao numa enquete sobre "beleza
>matematica".
>
>O que eu precisao eh que cada um de voces me envie uma lista contendo algo
>como 5 a 10 problemas/teoremas que voces consideram os mais bonitos e cujas
>solucoes/demonstracoes sao as mais elegantes e/ou inusitadas e/ou
>engenhosas. Nao precisa incluir a solucao/demonstracao, apenas o enunciado.
>No entanto, se voce tiver em mente uma solucao/demonstracao especifica
>(entre varias existentes) nao deixe de mencionar pelo menos o metodo
>utilizado. 
>
>A unica restricao eh que estes resultados devem ser de um nivel acessivel a
>um aluno normal de 2o. grau (ou seja, o Ultimo Teorema de Fermat e o Porisma
>de Poncelet estao fora, mas o caso n = 4 do UTF e a versao para triangulos
>do Porisma poderiam ser incluidos).
>
>Importante: os resultados devem ser acessiveis a um aluno normal de 2o.
>grau, mas nao necessariamente fazer parte do curriculo normal do 2o. grau.
>
>Tambem nao precisa responder hoje ou amanha ou mesmo na semana que vem. Acho
>que vale a pena pensar por um tempo e consultar a literatura - as vezes pode
>ter um resultado belissimo do qual voce simplesmente se esqueceu por nao
>encontra-lo ha muito tempo. As Eurekas sao uma otima referencia. O "Proofs
>from the Book" tambem, apesar de nem tudo lah ter nivel de 2o. grau.
>
>Se houver um numero suficiente de respostas, eu me comprometo a publicar uma
>compilacao dos problemas e teoremas mais votados.
>
>Desde jah a gradeco o interesse de quem quiser participar.
>
>Um abraco,
>Claudio.
>
>
>=========================================================================
>Instruções para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>=========================================================================
>
>
>  
>

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================