[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] Re: [obm-l] Demonstração não encontrada
Não se espantem!
Isso é extremamente FÁCIL! Tanto é que foi provado por um ser comum e
insignificante chamado GAUSS
em sua tese de doutoramento.
Agora, falando sério, existem várias demonstrações que usam conceitos
não-algébricos. Mas no caso de Gauss,
parece-me que ele baseia-se em parte em considerações geométricas.
TEOREMA FUNDAMENTAL DA ÁLGEBRA:
"Todo polinômio p(x) em C[x] de grau >= 1 possui pelo menos uma raiz
complexa"
É possível demonstrá-lo partindo de alguns resultados básicos sobre funções
de 2 variáveis reais ou complexas.
Para f(x) = ax2+ bx + c, usa-se o método de isolar a e completar quadrados
(método conhecido desde os babilônios)
Já as eq. cúbicas e quárticas foram solucionadas no séc XVI pelos
matemáticos da Renascença ( Cardano e seu discípulo
Ferrari as publicaram no livro "Ars Magna").
Para f(x) = ax2+ bx + c, usa-se o método de isolar a e completar quadrados.
f(x) = x3 + ax2 + bx + c sempre com os coeficientes em C, faça y = x + a/3 e
retorne para f(x) = f(y - a/3) = g(y)= y3 + py + q com p = b - a2/3 e q =
c - ba/3 + 2 a3/27 e por favor verifique que a partir das raízes de 1 +
w + w2 = 0 teremos para quaisquer u e v:
( y + u + v ) ( y + wu + w2v ) ( y + w2u + wv ) = y3 + y ( -3uv ) + ( u3 +
v3 ).
Portanto se encontrarmos p = -3uv e q = u3 + v3 e seguirmos nos cálculos
acharemos as raízes de g(y) e consequentemente de f(x).
Ficou provado no séc. XIX por Abel e Galois que é impossível resolver por
radicais uma equação geral de grau >= 5
Eu acho um assunto interessante, porém pesado pra se tratar aqui.
Recorri a um texto do Grupo de Álgebra da UFMG pra fazer estes comentários.
FORTE ABRAÇO
----- Original Message -----
From: "brunos.pompeo" <brunos.pompeo@bol.com.br>
To: <obm-l@mat.puc-rio.br>
Sent: Saturday, July 19, 2003 7:21 PM
Subject: [obm-l] Demonstração não encontrada
> Gostaria q alguém me desse a demonstração do teorema
> fundamental da álgebra, ou seja, todo polinômio tem raíz.
> Por favor, identifique o e-mail.
> Obrigado
>
>
>
> Bruno Pompeo
>
>
> __________________________________________________________________________
> Acabe com aquelas janelinhas que pulam na sua tela.
> AntiPop-up UOL - É grátis!
> http://antipopup.uol.com.br/
>
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================