[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Fibonacci
on 09.04.03 12:01, Marcio at marciocohen@superig.com.br wrote:
> Obrigado ao pessoal que se manifestou na questao do rearranjo!
> Segue aqui um outro problema legal, que tambem ja circulou (sem resposta)
> pela lista.
>
> Esse eu consegui fazer (na época eu não tinha conseguido), mas minha solução
> é meio feia. Fica aqui pra voces tentarem também. Se alguém quiser depois eu
> mando a solução.
>
> Seja F_n o n-esimo nr. de fibonacci. Mostre que a serie 1/(F_n) converge, e
> determine sua soma.
>
> Abracos,
> Marcio
>
> PS: Eu iria mandar pra Eureka como proposto, mas achei universitario demais.
>
Oi, Marcio:
Estou supondo que F(1) = F(2) = 1 e F(n) = F(n-1) + F(n-2) para n >= 3.
A convergencia eh consequencia do seguinte resultado, que pode ser provado
por inducao completa:
Para todo n >= 3 F(n) > (5/4)^n
Dem:
F(3) = 2 > (5/4)^3 = 1,953125
Suponha que para 3 <= k <= n-1 tenhamos F(k) > (5/4)^k
Entao:
F(n) = F(n-1) + F(n-2) > (5/4)^(n-1) + (5/4)^(n-2) =
= (5/4 + 1)*(5/4)^(n-2) = (9/4)*(5/4)^(n-2) > (25/16)*(5/4)^(n-2) = (5/4)^n
-----
Como, para n >=3, F(n) > (5/4)^n, temos que:
para n >= 3, 0 < 1/F(n) < (4/5)^n.
Alem disso, SOMA(n>=3) (4/5)^n converge.
Logo SOMA(n>=3) 1/F(n) converge, pelo teste da comparacao.
*******
Acho que a soma pode sair atraves da formula de Binet:
F(n) = (1/raiz(5))*(A^n - B^n), onde:
A = (1+raiz(5))/2 e B = (1-raiz(5))/2
mas ainda nao encontrei o caminho.
Gostei do problema. Seria uma pena se todas as solucoes fossem feias, pois a
sequencia de Fibonacci eh tao "bonitinha"...
Um abraco,
Claudio.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================