[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] O caráter não enumerável de R



Um abraço a todos os amigos deste grupo no qual acabei de me inscrever!

O assunto que mencionei sempre me intriga um pouco. Há uma clássica 
demonstração de que R (o conjunto dos reais)não é numerável e que pode 
ser encontrada na maioria dos livros sobre Análise. Estas provas  
baseiam-se no fato de que, nos espaços euclidianos, conjuntos perfeitos 
não são numeráveis. Logo, um ponto chave em tais provas é que os 
elementos do espaço são pontos de acumulação do mesmo.

Sabemos que todo elemento de R é ponto de acumulação. Mas, e este é o 
ponto que me intriga, tal conclusão depende da métrica definida em R. 
Na  métrica euclidiana usual tal fato é demonstrado (admitindo-se que R 
seja completo). Mas, se tomarmos, por exemplo, a chamada métrica 
discreta (d(x,y)=1, se x<>y e d(x,y)=0 se x=y))então nenhum elemento de 
R (ou do espaço métrico em questão) é ponto de acumulação. A provas que 
conheço sobre a não enumerabilidade de R (que consistem em se construir 
uma seqüência de intervalos fechados aninhados) não mais se aplicam na 
métrica discreta.

Não me parece plausível que um espaço métrico seja enumerável numa 
métrica (ou topologia) e não numerável em outra, mas será que existe 
uma prova de que R (ou um espaço métrico qualquer) não é numerável a 
qual seja independente da forma segundo a qual definamos seus conjuntos 
abertos?

Artur
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================