[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Teorema de Fermat



   So' uma observacao trivial:o argumento que o Bruno mostrou nao so' mostra
que existem infinitos numeros primos mas tambem que a serie de seus inversos
diverge.
   Abracos,
           Gugu

>
>At 18:30 30/01/02 +0000, you wrote:
>
>>Me deixa eu ver se entendi. A função zeta(s) NÃO é  soma(1/n^s),  senão 
>>ela não estaria definida para todo s complexo. Mas ela é uma extensão de 
>>soma(1/n^s) onde está definida, para todo plano complexo. É isso? Nós 
>>vamos estudar isso em funções analíticas?
>
>Não sei bem o que vamos ver no curso de funções analíticas, mas acho que 
>não se fala da função zeta.
>
>>  Isso (a hipótese de Riemann) me parece mais um problema de análise do 
>> que de teoria dos números. Por que é considerado teoria dos números?
>
>Porque sim.
>
>Bruno
>....
>....
>....
>....
>Ok, vou falar sério. Euler foi o primeiro a ver uma ligação entre a função 
>zeta e a teoria dos números, quando ele achou a fatoração "mágica" abaixo: 
>(para re(s)>1, obviamente)
>
>zeta(s)=soma(1/n^s,n=1,2,3...)=produto_{sobre todos os primos p} 
>(1+1/p^s+1/p^{2s}+1/p^{3s}+...)
>
>Você consegue provar a fórmula acima? (ou ao menos ver que ela tem "cara de 
>ser verdadeira"?)
>
>Aliás a soma 1+1/p^s+1/p^{2s}+1/p^{3s}+... é soma de PG, logo,
>
>zeta(s)=produto_{sobre todos os primos p}  1/(1-p^{-s})
>
>Considere zeta(s) como função de uma variável real definida em 
>(1,infinito). Ela é contínua e lim zeta(s) para s->1 é infinito...(série 
>harmonica diverge...)
>
>A partir daí Euler deduziu que existem infinitos primos...não é difícil !
>
>Abraço,
>
>Bruno Leite
>
>PS mas é claro que existem mais ligações entre zeta e teoria dos números!!!
>
>(...)
>
>=========================================================================
>Instruções para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>O administrador desta lista é <nicolau@mat.puc-rio.br>
>=========================================================================

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================