2*3 + 3*5 + 4*7 + 5*9 + 6*11 + ... + (n+1)*(2n+1) =
2*4 - 2 + 3*6 - 3 + 4*8 - 4 + 5*10 - 5 + 6*12 - 6 + ...
+ (n+1)*(2n+2) - (n+1) =
2*4 + 3*6 + 4*8 + 5*10 + 6*12 + ... + (n+1)*(2n+2) - (2
+ 3 + 4 + 5 + 6 + ... + (n+1)) =
2*(2^2 + 3^2 + 4^2 + 5^2 + 6^2 + ... + (n+1)^2) - (2 + 3 + 4 + 5 + 6 + ...
+ (n+1)) =
2*(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + ... + (n+1)^2) - 2 - (2 + 3 + 4
+ 5 + 6 + ... + (n+1)) =
(2*(n+1)(n+2)(2n+3))/6 - 2 - ((n+3)n)/2 =
(n+1)(n+2)(2n+3)/3 - 2 - ((n+3)n)/2 =
(2*(n+1)(n+2)(2n+3) - 12 - 3*((n+3)n)) / 6 =
(4n^3 + 18n^2 + 26n + 12 - 12 - 3n^2 - 9n) / 6 =
(4n^3 + 15n^2 + 17n) / 6 =
(n/6) * (4n^2 + 15n +
17)
|