[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Parte inteira - insistente



Sauda,c~oes,
 
Escrevi para o prof. Rousseau sobre este problema. Segue sua resposta.
 
===
Dear Luis:

   Thanks for the problem.  My recollection is that finding (an exact
expression) for the sum of reciprocals of Fibonacci numbers is
a (famous?) unsolved problem.  Of course, the second
part is easier.   For that, one can just compute an appropriate
partial sum where the corresponding tail is shown to be
appropriately small, for example by using Binet's formula.
I just got your message, so I haven't carried
out the details of (2), but I know that I don't have any useful
ideas about (1).  I will take a look at the site you mentioned.

Cheers,

Cecil

===

Ficamos então com o problema de resolver a segunda parte.

E se ajudar, a fórmula de Binet é: F(n) = c ( A^n - B^n ),

onde c = sqrt{5}/5, A = (1 + sqrt{5})/2 e B = (1 - sqrt{5})/2

 
[ ]'s
Lu'is
 
Para: Obm
Enviada em: Sexta-feira, 13 de Abril de 2001 21:40
Assunto: Parte inteira - insistente

Primeia parte : Qual é o limite de somatório de 1/F(n) com n variando de 1 até G , onde F(n) é o n-ésimo da sequência de Fibonacci, com G tendendo a infinito ??
Segunda parte : Se o limite não for infinito, e é igual a H, calcular a parte inteira de 50H.
 
Abraços,
     ¡ Villard !