-----Mensagem original-----
De: José Fabrício Maia <rhr832@secrel.com.br> Para: discussão de problemas <obm-rj@mat.puc-rio.br> Data: Domingo, 6 de Fevereiro de 2000 16:27 Assunto: correção ajuda-demonstração ESPERO RETORNO COLEGA MARCOS EIKE TINEN DOS
SANTOS: CORREÇÃO LINHA 17
Sendo as amplitudes de um triângulo. a',
b', c'. Temos que observar que a soma desta PA, no caso do referido problema tem
que ser 180 graus ou pi radianos.
a'+b'+c' = 180
S3 = 3(a' + c')/2 = 180
3(a'+c') = 360 => a'+c' = 120
Proposta: o termo médio é a média
aritmética dos outros dois.
b' = 120/2 => b' = 60
Sendo as halturas de um triângulo, ha, hb,
hc temos que observar que as alturas são perpendiculares aos seus lados
opostos.
Pela teoria dos senos temos:
hc = a * sen 60
ha = c * sen
60
Sendo PA como o enunciado disse temos:
hb = (a * sen 60 + c * sen 60)/2
hb = sen 60 (a + c)/2
hc - hb = a * sen 60 - sen 60 (a +
c)/2
hc - hb = (sen 60 * a - sen 60 * c)/2 = hb - ha = sen 60
(a+c)/2 - a sen 60 (não vi sentido nesta igualdade por gentileza
corrija)
sen 60 * a - sen 60 * c = sen 60 *c - sen 60 *a
2sen 60 * a - 2 sen 60 * c = 0
2 sen 60 * a = 2 sen 60 * c de fato:
a = c
Observe que se a = c temos que ha = hb = hc.
Então: Usando o simples teorema dos senos
temos:
c/sen c' = b / sen 60 = sen 60 = sen a' => 60 = a',
já que outros valores não o satisfaria.
Substituindo em a'+c' = 120
temos: c' = 60
|