
Fano threefolds and mirror duality

Lecture 1

Program (Coates - Corti - Galkin - Golyshev - van Straten - . . . ) :

Mirror : Fanos → Objects of special nature, the so called

Landau-Ginzburg models.

LGs: actual pencils of motives or their realization.

Slogan: Classify LGs −→ classify Fanos

Therefore : Start where classification is known (dimension 3), study

LGs, make guess at what can be LG, go 1 or 2 dimension higher.

Remark : Dimensions 1 and 2 too specific to infer anything

definitive.
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Definition A Fano: smooth, complex, projective, −K ample.

Known Classification P1, del Pezzos, Mori-Mukai.

Mori-Mukai : Classify Fano according to their Picard

rank ρ = h2(F,Z), indexd = index of −K · Z in −K ·Q ∩NS.

worth noticing The Hodge diamond of a 3-Fano:
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Comment on each zero of the Hodge diamond (if enough time,

otherwise exercise). Hint: vanishing theorems.
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Fano threefolds 105 deformation families (Fano, Iskovskikh, Mori -

Mukai) In particular, 17 deformation families of ρ = 1 Fanos

(Iskovskikh).

Landau-Ginzburg models No definition or construction of the LG

model of a Fano is known, which makes the zest of it.

However [most deeply] by HMS, the Fukaya - Seidel category of

the/an LG is equivalent to Db
cohF

[most practicably] by the original mirror conjecture
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The regularised quantum D-module of a Fano isisomorphic to the Gauss-Manin conjection in its LG.

For the most of the remainder of Lecture 1 and part of Lecture 2

we make the Original Mirror Conjecture (or, VHS Mirror

Conjecture) as specific and concrete as possible.

To this end must

(I) define regularised quantum D-module

(II) review Gauss-Manin connections and pin down the candidate

pencils that can aspire to be LGs.
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Quantum Cohomology We review samll quantum cohomology for

Fano manifolds.

i. Gromov -Witten invariants : Glossary p.6

ii. Quantum multiplication, first connection: Glossary 24-33

iii. The original mirror conjecture : Glossary 34-36

remark. The quantum Lefschetz principle of Givental, Coates, Lee

can be interpreted as saying that the regularised quantum

D-module of F holds information on the GW–count on a generic

CY anticanonical selection X in F in a [n arguably] more natural

way than it does for the GW–count on F itself.
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Round-up: Now what?

How to complete regularized quantum D-modules: known

methods:

We will mostly concentrate on

A Naive Gromov-Witten count. Generally good for high index.

B Homogeneous varieties: known by

Peterson-Fulton-Woodward-Bertram-Buch–Ciocan-F . . . .

C Toric: Batyrev, Givental, ...

D Complete intersections in the above.

E Toric degenerations.

We will mostly concentrate on E in these lectures.
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What will we see: It is clear that the world of Fanos-like objects is

much smaller than that of pencils. One then expects that one is

going to end up with pencils with very special properties. The

basics insight here is this. Imagine a class of functions which is the

opposite of Morse, i.e. such where you want the critical values

come as much together as possible. There are known extremes on

this way. It is these animals that we call ”extremal pencils”.

8



Our organising principle in search for Fanos is the start with the

study of the extremal ones and understand how mirror duality

works for these.

Next lecture:

i. Extremal local systems : definition;

ii. Local system from a Laurent poly;

iii. Mirror symmetry in the Laurent poly setup;

iv. Computing quantum D-modules of rk 1 Fano threefolds;
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Lecture 2

Reminder We consider a Fano threefold F ,

the quantum D – module Dζ = ζ(−K·) on a torus given by the

quantum multiplication by −K

the regularized quantum DE LΦ = 0, which is basically Fourier

transform of the above.

Then Mirror conjecture : L is an operator of Richard - Fuchs type

i.e there is a pencil E π
−→A1 in which it is realized as the variation

of the middle relative cohomology.

Clear Many more pencils than there are Fanos. Which functions?

Guess (at least for odd-dimensional Fanos) : Extremal: want

critical values to come together as strongly as possible.

Want To define that precisely.
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Extremal local systems:

Geometric ramification: Glossary 43

Extremal: Glossary 44

Further specialization of the Mirror hypothesis

Extremal Laurent polynomials: Glossary 51 – 53

Computing the PF operator from Laurent polynomial. It turns out

that it is an algorithmic problem to compute the Picard - Fuchs

equation given a Laurent polynomial P .

The constant term series :
∑

c. t. (P i)zi =
∑
cit
−i.
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Proposition There exists a relative cycle γt in Et, t near infinity,

and a fiberwise differential form ωt such that one has an expansion

around ∞: ∫
γt

ωt =
∑

cit
−1.

Remarks ωt is the residue form of the form
∧ dxi

xi
on the ambient

torus; γs: define

Ts = {(x1, ..., xn) ∈ π : |x1| = |x2| = |x3| = s} ,

Rδ =
⋃
Tsδ ≤ s ≤ 1,

assume t small and δ small,

γt = Yt ∩Rδ ⊂ Yt
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Hence: given a Laurent polynomial P , can build the Picard-Fuchs

equation by finding an L such that L
∑
c.t. (P i)t−i = 0. Perform

the standard Fuchsian procedure to determine the symbol and the

conjugacy classes of the local monodromies ⇒ find geometric

ramification.

In other words, can effectively tell if R = 2 ∗ rkL, by looking at L
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Example. Consider P2. The regularized quantum DE with respect

to the coordinate z = t−1 is[
D2 − 27z3(D + 1)2

]
Φ(z) = 0

and Φ(z) =
∑ (3n!

(n!)3 z
3n.

One computes singularities: at t =∞, t = 3 3
√

1
i
, i = 0, 1, 2

Conjugacy classes of all four local monodromies:

 1 1

0 1


R = 4 = 2 · 2⇒ extremal.
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Extremality is acyclicity:

Proposition. Let F be a constructible sheaf of C–vector spaces on a

complex analytic smooth projective curve X. Denote by U an open

subset over which F is locally constant, j the open embedding. Let

x be a point in U and let X \ U = X0 = {xi}. Denote by Fx the

fiber of F over x. This turns Fx into a π1(U)–module. One has the

Euler–Poincare formula:

χ(X,F ) =
∑

(−1)rhr(X,F ) = (2−2g) dimFx−
∑

(dimFxi
−dimFx).
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If, additionally, F = j∗j
∗F , then dimF(xi) = dimF Iix .

Recall that H2(X, j∗(j
∗(F ))) is dual to H0

c (X, j∗(j
∗(F )∨)).

Remember that we have agreed to strip away the trivial

constituents from our sheaf.

Hence, in our situation, with X = P1(C) and H0(X,F ) = 0 and

H2(X,F ) = 0, the Euler-Poincare formula implies

extremal ⇔ H1(X,F ) = 0 .
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