Logging to /Users/s/tmp/pari-10.05 (15:44) gp > M=[1,2,3;8,9,4;7,6,5] [1 2 3] [8 9 4] [7 6 5] (15:44) gp > matdet(M) -48 (15:44) gp > 7*21-15*19 -138 (15:46) gp > factor(%) [-1 1] [ 2 1] [ 3 1] [23 1] (15:46) gp > M=[1,2,3;8,9,4;7,6,5] [1 2 3] [8 9 4] [7 6 5] (15:48) gp > #M 3 (15:48) gp > condensar(N)=matrix(#N-1,#N-1,a,b,matdet([N[a,b],N[a,b+1];N[a+1,b],N[a+1,b+1]])) (N)->matrix(#N-1,#N-1,a,b,matdet([N[a,b],N[a,b+1];N[a+1,b],N[a+1,b+1]])) (15:49) gp > condensar(M) [ -7 -19] [-15 21] (15:49) gp > condensar(%) [-432] (15:50) gp > factor(432) [2 4] [3 3] (15:50) gp > -432/9 -48 (15:50) gp > matdet(M) -48 (15:51) gp > 144*3 432 (15:51) gp > 7*7 49 (15:51) gp > 5*19 95 (15:52) gp > 49+95 144 (15:52) gp > 144*3 432 (15:52) gp > ?condensar condensar = (N)->matrix(#N-1,#N-1,a,b,matdet([N[a,b],N[a,b+1];N[a+1,b],N[a+1,b+1]])) (15:52) gp > ?component component(x,n): the n'th component of the internal representation of x. For vectors or matrices, it is simpler to use x[]. For list objects such as nf, bnf, bnr or ell, it is much easier to use member functions starting with ".". (15:53) gp > ??component component(x,n): Extracts the n-th-component of x. This is to be understood as follows: every PARI type has one or two initial code words. The components are counted, starting at 1, after these code words. In particular if x is a vector, this is indeed the n-th-component of x, if x is a matrix, the n-th column, if x is a polynomial, the n-th coefficient (i.e. of degree n-1), and for power series, the n-th significant coefficient. For polynomials and power series, one should rather use polcoeff, and for vectors and matrices, the [] operator. Namely, if x is a vector, then x[n] represents the n-th component of x. If x is a matrix, x[m,n] represents the coefficient of row m and column n of the matrix, x[m,] represents the m-th row of x, and x[,n] represents the n-th column of x. Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should almost never be used directly. Some useful exceptions: ? x = 3 + O(3^5); ? component(x, 2) /*-- (type RETURN to continue) --*/ %2 = 81 \\ p^(p-adic accuracy) ? component(x, 1) %3 = 3 \\ p ? q = Qfb(1,2,3); ? component(q, 1) %5 = 1 The library syntax is GEN compo(GEN x, long n). (15:53) gp > ?extract extract is aliased to: vecextract(x,y,{z}): extraction of the components of the matrix or vector x according to y and z. If z is omitted, y represents columns, otherwise y corresponds to rows and z to columns. y and z can be vectors (of indices), strings (indicating ranges as in "1..10") or masks (integers whose binary representation indicates the indices to extract, from left to right 1, 2, 4, 8, etc.). (15:53) gp > extract(M,[1,2],[1,2]) [1 2] [8 9] (15:54) gp > M [1 2 3] [8 9 4] [7 6 5] (15:54) gp > condensar(N)=matrix(#N-1,#N-1,a,b,matdet(extract(M,[a,a+1],[b,b+1]))) (N)->matrix(#N-1,#N-1,a,b,matdet(extract(M,[a,a+1],[b,b+1]))) (15:55) gp > condensar(M) [ -7 -19] [-15 21] (15:55) gp > [m11,m12,m13;m21,m22,m23;m31,m32,m33] [m11 m12 m13] [m21 m22 m23] [m31 m32 m33] (15:56) gp > condensar(%) [ -7 -19] [-15 21] (15:56) gp > condensar(N)=matrix(#N-1,#N-1,a,b,matdet(extract(N,[a,a+1],[b,b+1]))) (N)->matrix(#N-1,#N-1,a,b,matdet(extract(N,[a,a+1],[b,b+1]))) (15:57) gp > [m11,m12,m13;m21,m22,m23;m31,m32,m33] [m11 m12 m13] [m21 m22 m23] [m31 m32 m33] (15:57) gp > condensar(%) [m22*m11 - m21*m12 m23*m12 - m22*m13] [m32*m21 - m31*m22 m33*m22 - m32*m23] (15:57) gp > condensar(%) [(m33*m22^2 - m32*m23*m22)*m11 + ((-m33*m22*m21 + m31*m23*m22)*m12 + (m32*m22*m21 - m31*m22^2)*m13)] (15:57) gp > %[1] *** at top-level: %[1] *** ^--- *** incorrect type in _[_] OCcompo1 [not a vector] (t_MAT). *** Break loop: type 'break' to go back to GP prompt break> break (15:57) gp > %[1,1] (m33*m22^2 - m32*m23*m22)*m11 + ((-m33*m22*m21 + m31*m23*m22)*m12 + (m32*m22*m21 - m31*m22^2)*m13) (15:57) gp > %/m22 (m33*m22 - m32*m23)*m11 + ((-m33*m21 + m31*m23)*m12 + (m32*m21 - m31*m22)*m13) (15:57) gp > [a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] [a b c d] [e f g h] [i j k l] [m n o p] (15:58) gp > condensar(%) [f*a - e*b g*b - f*c h*c - g*d] [j*e - i*f k*f - j*g l*g - k*h] [n*i - m*j o*j - n*k p*k - o*l] (15:58) gp > M=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] [a b c d] [e f g h] [i j k l] [m n o p] (15:58) gp > M2=condensar(M) [f*a - e*b g*b - f*c h*c - g*d] [j*e - i*f k*f - j*g l*g - k*h] [n*i - m*j o*j - n*k p*k - o*l] (15:58) gp > M3=condensar(M2) [(k*f^2 - j*g*f)*a + ((-k*f*e + i*g*f)*b + (j*f*e - i*f^2)*c) (l*g^2 - k*h*g)*b + ((-l*g*f + j*h*g)*c + (k*g*f - j*g^2)*d)] [(o*j^2 - n*k*j)*e + ((-o*j*i + m*k*j)*f + (n*j*i - m*j^2)*g) (p*k^2 - o*l*k)*f + ((-p*k*j + n*l*k)*g + (o*k*j - n*k^2)*h)] (15:59) gp > N3=matrix(#M3,#M3,a,b,M3[a,b]/M[a+1,b+1]) [(k*f - j*g)*a + ((-k*e + i*g)*b + (j*e - i*f)*c) (l*g - k*h)*b + ((-l*f + j*h)*c + (k*f - j*g)*d)] [(o*j - n*k)*e + ((-o*i + m*k)*f + (n*i - m*j)*g) (p*k - o*l)*f + ((-p*j + n*l)*g + (o*j - n*k)*h)] (15:59) gp > condensar(%) [((p*k^2 - o*l*k)*f^2 + (((-2*p*k + o*l)*j + n*l*k)*g + (o*k*j - n*k^2)*h)*f + ((p*j^2 - n*l*j)*g^2 + (-o*j^2 + n*k*j)*h*g))*a + ((((-p*k^2 + o*l*k)*f + (p*k - o*l)*j*g)*e + (((p*k*i - m*l*k)*g + (-o*k*i + m*k^2)*h)*f + ((-p*j*i + m*l*j)*g^2 + (o*j*i - m*k*j)*h*g)))*b + ((((p*k*j - n*l*k)*f + (-p*j^2 + n*l*j)*g)*e + ((-p*k*i + m*l*k)*f^2 + ((p*j*i - m*l*j)*g + (n*k*i - m*k*j)*h)*f + (-n*j*i + m*j^2)*h*g))*c + (((-o*k*j + n*k^2)*f + (o*j^2 - n*k*j)*g)*e + ((o*k*i - m*k^2)*f^2 + ((-o*j - n*k)*i + 2*m*k*j)*g*f + (n*j*i - m*j^2)*g^2))*d))] (15:59) gp > M4=% [((p*k^2 - o*l*k)*f^2 + (((-2*p*k + o*l)*j + n*l*k)*g + (o*k*j - n*k^2)*h)*f + ((p*j^2 - n*l*j)*g^2 + (-o*j^2 + n*k*j)*h*g))*a + ((((-p*k^2 + o*l*k)*f + (p*k - o*l)*j*g)*e + (((p*k*i - m*l*k)*g + (-o*k*i + m*k^2)*h)*f + ((-p*j*i + m*l*j)*g^2 + (o*j*i - m*k*j)*h*g)))*b + ((((p*k*j - n*l*k)*f + (-p*j^2 + n*l*j)*g)*e + ((-p*k*i + m*l*k)*f^2 + ((p*j*i - m*l*j)*g + (n*k*i - m*k*j)*h)*f + (-n*j*i + m*j^2)*h*g))*c + (((-o*k*j + n*k^2)*f + (o*j^2 - n*k*j)*g)*e + ((o*k*i - m*k^2)*f^2 + ((-o*j - n*k)*i + 2*m*k*j)*g*f + (n*j*i - m*j^2)*g^2))*d))] (16:00) gp > F=M4[1,1] ((p*k^2 - o*l*k)*f^2 + (((-2*p*k + o*l)*j + n*l*k)*g + (o*k*j - n*k^2)*h)*f + ((p*j^2 - n*l*j)*g^2 + (-o*j^2 + n*k*j)*h*g))*a + ((((-p*k^2 + o*l*k)*f + (p*k - o*l)*j*g)*e + (((p*k*i - m*l*k)*g + (-o*k*i + m*k^2)*h)*f + ((-p*j*i + m*l*j)*g^2 + (o*j*i - m*k*j)*h*g)))*b + ((((p*k*j - n*l*k)*f + (-p*j^2 + n*l*j)*g)*e + ((-p*k*i + m*l*k)*f^2 + ((p*j*i - m*l*j)*g + (n*k*i - m*k*j)*h)*f + (-n*j*i + m*j^2)*h*g))*c + (((-o*k*j + n*k^2)*f + (o*j^2 - n*k*j)*g)*e + ((o*k*i - m*k^2)*f^2 + ((-o*j - n*k)*i + 2*m*k*j)*g*f + (n*j*i - m*j^2)*g^2))*d)) (16:00) gp > F/M2[2,2] ((p*k - o*l)*f + ((-p*j + n*l)*g + (o*j - n*k)*h))*a + (((-p*k + o*l)*e + ((p*i - m*l)*g + (-o*i + m*k)*h))*b + (((p*j - n*l)*e + ((-p*i + m*l)*f + (n*i - m*j)*h))*c + ((-o*j + n*k)*e + ((o*i - m*k)*f + (-n*i + m*j)*g))*d)) (16:00) gp > Dodg=% ((p*k - o*l)*f + ((-p*j + n*l)*g + (o*j - n*k)*h))*a + (((-p*k + o*l)*e + ((p*i - m*l)*g + (-o*i + m*k)*h))*b + (((p*j - n*l)*e + ((-p*i + m*l)*f + (n*i - m*j)*h))*c + ((-o*j + n*k)*e + ((o*i - m*k)*f + (-n*i + m*j)*g))*d)) (16:00) gp > Dodg-matdet(M) 0 (16:01) gp > [x,y] [x, y] (16:02) gp > substvec(%,[x,y],[y,(1+x)/y]) [y, 1/y*x + 1/y] (16:03) gp > substvec(%,[x,y],[y,(1+x)/y]) [1/y*x + 1/y, (y^2 + y)/(x + 1)] (16:03) gp > f(v)=[v[2],(1+v[1])/v[2]] (v)->[v[2],(1+v[1])/v[2]] (16:03) gp > [x,y] [x, y] (16:03) gp > f(%) [y, 1/y*x + 1/y] (16:03) gp > f(%) [1/y*x + 1/y, (y^2 + y)/(x + 1)] (16:03) gp > f(v)=[v[2],(1+v[2])/v[1]] (v)->[v[2],(1+v[2])/v[1]] (16:04) gp > [x,y] [x, y] (16:04) gp > f(%) [y, (y + 1)/x] (16:04) gp > f(%) [(y + 1)/x, (x + (y + 1))/(y*x)] (16:04) gp > f(%) [(x + (y + 1))/(y*x), 1/y*x + 1/y] (16:04) gp > f(%) [1/y*x + 1/y, x] (16:04) gp > f(%) [x, y] (16:04) gp > substvec(%,[x,y],[y,(1+y)/x]) [y, (y + 1)/x] (16:04) gp > substvec(%,[x,y],[y,(1+y)/x]) [(y + 1)/x, (x + (y + 1))/(y*x)] (16:04) gp > substvec(%,[x,y],[y,(1+y)/x]) [(x + (y + 1))/(y*x), 1/y*x + 1/y] (16:04) gp > substvec(%,[x,y],[y,(1+y)/x]) [1/y*x + 1/y, x] (16:04) gp > substvec(%,[x,y],[y,(1+y)/x]) [x, y] (16:04) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [y, (y^2 + 1)/x] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(y^2 + 1)/x, (x^2 + (y^4 + 2*y^2 + 1))/(y*x^2)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^2 + (y^4 + 2*y^2 + 1))/(y*x^2), (x^4 + (2*y^2 + 2)*x^2 + (y^6 + 3*y^4 + 3*y^2 + 1))/(y^2*x^3)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^4 + (2*y^2 + 2)*x^2 + (y^6 + 3*y^4 + 3*y^2 + 1))/(y^2*x^3), (x^6 + (2*y^2 + 3)*x^4 + (3*y^4 + 6*y^2 + 3)*x^2 + (y^8 + 4*y^6 + 6*y^4 + 4*y^2 + 1))/(y^3*x^4)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^6 + (2*y^2 + 3)*x^4 + (3*y^4 + 6*y^2 + 3)*x^2 + (y^8 + 4*y^6 + 6*y^4 + 4*y^2 + 1))/(y^3*x^4), (x^8 + (2*y^2 + 4)*x^6 + (3*y^4 + 9*y^2 + 6)*x^4 + (4*y^6 + 12*y^4 + 12*y^2 + 4)*x^2 + (y^10 + 5*y^8 + 10*y^6 + 10*y^4 + 5*y^2 + 1))/(y^4*x^5)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^8 + (2*y^2 + 4)*x^6 + (3*y^4 + 9*y^2 + 6)*x^4 + (4*y^6 + 12*y^4 + 12*y^2 + 4)*x^2 + (y^10 + 5*y^8 + 10*y^6 + 10*y^4 + 5*y^2 + 1))/(y^4*x^5), (x^10 + (2*y^2 + 5)*x^8 + (3*y^4 + 12*y^2 + 10)*x^6 + (4*y^6 + 18*y^4 + 24*y^2 + 10)*x^4 + (5*y^8 + 20*y^6 + 30*y^4 + 20*y^2 + 5)*x^2 + (y^12 + 6*y^10 + 15*y^8 + 20*y^6 + 15*y^4 + 6*y^2 + 1))/(y^5*x^6)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^10 + (2*y^2 + 5)*x^8 + (3*y^4 + 12*y^2 + 10)*x^6 + (4*y^6 + 18*y^4 + 24*y^2 + 10)*x^4 + (5*y^8 + 20*y^6 + 30*y^4 + 20*y^2 + 5)*x^2 + (y^12 + 6*y^10 + 15*y^8 + 20*y^6 + 15*y^4 + 6*y^2 + 1))/(y^5*x^6), (x^12 + (2*y^2 + 6)*x^10 + (3*y^4 + 15*y^2 + 15)*x^8 + (4*y^6 + 24*y^4 + 40*y^2 + 20)*x^6 + (5*y^8 + 30*y^6 + 60*y^4 + 50*y^2 + 15)*x^4 + (6*y^10 + 30*y^8 + 60*y^6 + 60*y^4 + 30*y^2 + 6)*x^2 + (y^14 + 7*y^12 + 21*y^10 + 35*y^8 + 35*y^6 + 21*y^4 + 7*y^2 + 1))/(y^6*x^7)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^12 + (2*y^2 + 6)*x^10 + (3*y^4 + 15*y^2 + 15)*x^8 + (4*y^6 + 24*y^4 + 40*y^2 + 20)*x^6 + (5*y^8 + 30*y^6 + 60*y^4 + 50*y^2 + 15)*x^4 + (6*y^10 + 30*y^8 + 60*y^6 + 60*y^4 + 30*y^2 + 6)*x^2 + (y^14 + 7*y^12 + 21*y^10 + 35*y^8 + 35*y^6 + 21*y^4 + 7*y^2 + 1))/(y^6*x^7), (x^14 + (2*y^2 + 7)*x^12 + (3*y^4 + 18*y^2 + 21)*x^10 + (4*y^6 + 30*y^4 + 60*y^2 + 35)*x^8 + (5*y^8 + 40*y^6 + 100*y^4 + 100*y^2 + 35)*x^6 + (6*y^10 + 45*y^8 + 120*y^6 + 150*y^4 + 90*y^2 + 21)*x^4 + (7*y^12 + 42*y^10 + 105*y^8 + 140*y^6 + 105*y^4 + 42*y^2 + 7)*x^2 + (y^16 + 8*y^14 + 28*y^12 + 56*y^10 + 70*y^8 + 56*y^6 + 28*y^4 + 8*y^2 + 1))/(y^7*x^8)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^14 + (2*y^2 + 7)*x^12 + (3*y^4 + 18*y^2 + 21)*x^10 + (4*y^6 + 30*y^4 + 60*y^2 + 35)*x^8 + (5*y^8 + 40*y^6 + 100*y^4 + 100*y^2 + 35)*x^6 + (6*y^10 + 45*y^8 + 120*y^6 + 150*y^4 + 90*y^2 + 21)*x^4 + (7*y^12 + 42*y^10 + 105*y^8 + 140*y^6 + 105*y^4 + 42*y^2 + 7)*x^2 + (y^16 + 8*y^14 + 28*y^12 + 56*y^10 + 70*y^8 + 56*y^6 + 28*y^4 + 8*y^2 + 1))/(y^7*x^8), (x^16 + (2*y^2 + 8)*x^14 + (3*y^4 + 21*y^2 + 28)*x^12 + (4*y^6 + 36*y^4 + 84*y^2 + 56)*x^10 + (5*y^8 + 50*y^6 + 150*y^4 + 175*y^2 + 70)*x^8 + (6*y^10 + 60*y^8 + 200*y^6 + 300*y^4 + 210*y^2 + 56)*x^6 + (7*y^12 + 63*y^10 + 210*y^8 + 350*y^6 + 315*y^4 + 147*y^2 + 28)*x^4 + (8*y^14 + 56*y^12 + 168*y^10 + 280*y^8 + 280*y^6 + 168*y^4 + 56*y^2 + 8)*x^2 + (y^18 + 9*y^16 + 36*y^14 + 84*y^12 + 126*y^10 + 126*y^8 + 84*y^6 + 36*y^4 + 9*y^2 + 1))/(y^8*x^9)] (16:05) gp > substvec(%,[x,y],[y,(1+y^2)/x]) [(x^16 + (2*y^2 + 8)*x^14 + (3*y^4 + 21*y^2 + 28)*x^12 + (4*y^6 + 36*y^4 + 84*y^2 + 56)*x^10 + (5*y^8 + 50*y^6 + 150*y^4 + 175*y^2 + 70)*x^8 + (6*y^10 + 60*y^8 + 200*y^6 + 300*y^4 + 210*y^2 + 56)*x^6 + (7*y^12 + 63*y^10 + 210*y^8 + 350*y^6 + 315*y^4 + 147*y^2 + 28)*x^4 + (8*y^14 + 56*y^12 + 168*y^10 + 280*y^8 + 280*y^6 + 168*y^4 + 56*y^2 + 8)*x^2 + (y^18 + 9*y^16 + 36*y^14 + 84*y^12 + 126*y^10 + 126*y^8 + 84*y^6 + 36*y^4 + 9*y^2 + 1))/(y^8*x^9), (x^18 + (2*y^2 + 9)*x^16 + (3*y^4 + 24*y^2 + 36)*x^14 + (4*y^6 + 42*y^4 + 112*y^2 + 84)*x^12 + (5*y^8 + 60*y^6 + 210*y^4 + 280*y^2 + 126)*x^10 + (6*y^10 + 75*y^8 + 300*y^6 + 525*y^4 + 420*y^2 + 126)*x^8 + (7*y^12 + 84*y^10 + 350*y^8 + 700*y^6 + 735*y^4 + 392*y^2 + 84)*x^6 + (8*y^14 + 84*y^12 + 336*y^10 + 700*y^8 + 840*y^6 + 588*y^4 + 224*y^2 + 36)*x^4 + (9*y^16 + 72*y^14 + 252*y^12 + 504*y^10 + 630*y^8 + 504*y^6 + 252*y^4 + 72*y^2 + 9)*x^2 + (y^20 + 10*y^18 + 45*y^16 + 120*y^14 + 210*y^12 + 252*y^10 + 210*y^8 + 120*y^6 + 45*y^4 + 10*y^2 + 1))/(y^9*x^10)] (16:05) gp > g(v,n=1)=[v[2],(1+v[2]^n)/v[1]] (v,n=1)->[v[2],(1+v[2]^n)/v[1]] (16:06) gp > [x,y] [x, y] (16:06) gp > g(%,2) [y, (y^2 + 1)/x] (16:06) gp > g(%,2) [(y^2 + 1)/x, (x^2 + (y^4 + 2*y^2 + 1))/(y*x^2)] (16:06) gp > [1,1] [1, 1] (16:06) gp > g(%,2) [1, 2] (16:06) gp > g(%,2) [2, 5] (16:06) gp > g(%,2) [5, 13] (16:06) gp > g(%,2) [13, 34] (16:06) gp > g(%,2) [34, 89] (16:06) gp > g(%,2) [89, 233] (16:06) gp > g(%,2) [233, 610] (16:06) gp > g(%,2) [610, 1597] (16:06) gp > g(%,2) [1597, 4181] (16:06) gp > g(%,2) [4181, 10946] (16:06) gp > 1/(1-t-t^2+O(t^20)) 1 + t + 2*t^2 + 3*t^3 + 5*t^4 + 8*t^5 + 13*t^6 + 21*t^7 + 34*t^8 + 55*t^9 + 89*t^10 + 144*t^11 + 233*t^12 + 377*t^13 + 610*t^14 + 987*t^15 + 1597*t^16 + 2584*t^17 + 4181*t^18 + 6765*t^19 + O(t^20) (16:07) gp > Vec(%) [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765] (16:08) gp > [1,1] [1, 1] (16:08) gp > g(%,3) [1, 2] (16:08) gp > g(%,3) [2, 9] (16:08) gp > g(%,3) [9, 365] (16:08) gp > g(%,3) [365, 5403014] (16:08) gp > g(%,3) [5403014, 432130991537958813] (16:08) gp > g(%,3) [432130991537958813, 14935169284101525874491673463268414536523593057] (16:08) gp > g(%,3) [14935169284101525874491673463268414536523593057, 7709301567111884917552482697377779958720974702081890294692569618782709587228523998549841753711433720909908231142293680138] (16:08) gp > g(%,3) [7709301567111884917552482697377779958720974702081890294692569618782709587228523998549841753711433720909908231142293680138, 30678558804624930034147518983886576131984287731428646793729131734971009607463088977063686819285457914061964438723180951618875342373102579206143383988098867574773466530609855189428388655512096141865165628736994949749324128574019159720823464396778723815816289810746085419640007051909449686839610063507440280012340958089] (16:08) gp > [x,y] [x, y] (16:08) gp > g(%,3) [y, (y^3 + 1)/x] (16:08) gp > g(%,3) [(y^3 + 1)/x, (x^3 + (y^9 + 3*y^6 + 3*y^3 + 1))/(y*x^3)] (16:08) gp > g(%,3) [(x^3 + (y^9 + 3*y^6 + 3*y^3 + 1))/(y*x^3), (x^9 + (3*y^6 + 6*y^3 + 3)*x^6 + (3*y^15 + 15*y^12 + 30*y^9 + 30*y^6 + 15*y^3 + 3)*x^3 + (y^24 + 8*y^21 + 28*y^18 + 56*y^15 + 70*y^12 + 56*y^9 + 28*y^6 + 8*y^3 + 1))/(y^3*x^8)] (16:08) gp > g(%,3) [(x^9 + (3*y^6 + 6*y^3 + 3)*x^6 + (3*y^15 + 15*y^12 + 30*y^9 + 30*y^6 + 15*y^3 + 3)*x^3 + (y^24 + 8*y^21 + 28*y^18 + 56*y^15 + 70*y^12 + 56*y^9 + 28*y^6 + 8*y^3 + 1))/(y^3*x^8), (x^24 + (6*y^6 + 15*y^3 + 8)*x^21 + (3*y^15 + 39*y^12 + 127*y^9 + 177*y^6 + 114*y^3 + 28)*x^18 + (30*y^21 + 236*y^18 + 786*y^15 + 1440*y^12 + 1570*y^9 + 1020*y^6 + 366*y^3 + 56)*x^15 + (15*y^30 + 205*y^27 + 1170*y^24 + 3780*y^21 + 7770*y^18 + 10710*y^15 + 10080*y^12 + 6420*y^9 + 2655*y^6 + 645*y^3 + 70)*x^12 + (3*y^39 + 92*y^36 + 870*y^33 + 4356*y^30 + 13805*y^27 + 30096*y^24 + 47124*y^21 + 54120*y^18 + 45837*y^15 + 28380*y^12 + 12518*y^9 + 3732*y^6 + 675*y^3 + 56)*x^9 + (28*y^45 + 420*y^42 + 2940*y^39 + 12740*y^36 + 38220*y^33 + 84084*y^30 + 140140*y^27 + 180180*y^24 + 180180*y^21 + 140140*y^18 + 84084*y^15 + 38220*y^12 + 12740*y^9 + 2940*y^6 + 420*y^3 + 28)*x^6 + (8*y^54 + 144*y^51 + 1224*y^48 + 6528*y^45 + 24480*y^42 + 68544*y^39 + 148512*y^36 + 254592*y^33 + 350064*y^30 + 388960*y^27 + 350064*y^24 + 254592*y^21 + 148512*y^18 + 68544*y^15 + 24480*y^12 + 6528*y^9 + 1224*y^6 + 144*y^3 + 8)*x^3 + (y^63 + 21*y^60 + 210*y^57 + 1330*y^54 + 5985*y^51 + 20349*y^48 + 54264*y^45 + 116280*y^42 + 203490*y^39 + 293930*y^36 + 352716*y^33 + 352716*y^30 + 293930*y^27 + 203490*y^24 + 116280*y^21 + 54264*y^18 + 20349*y^15 + 5985*y^12 + 1330*y^9 + 210*y^6 + 21*y^3 + 1))/(y^8*x^21)] (16:08) gp > g(%,3) [(x^24 + (6*y^6 + 15*y^3 + 8)*x^21 + (3*y^15 + 39*y^12 + 127*y^9 + 177*y^6 + 114*y^3 + 28)*x^18 + (30*y^21 + 236*y^18 + 786*y^15 + 1440*y^12 + 1570*y^9 + 1020*y^6 + 366*y^3 + 56)*x^15 + (15*y^30 + 205*y^27 + 1170*y^24 + 3780*y^21 + 7770*y^18 + 10710*y^15 + 10080*y^12 + 6420*y^9 + 2655*y^6 + 645*y^3 + 70)*x^12 + (3*y^39 + 92*y^36 + 870*y^33 + 4356*y^30 + 13805*y^27 + 30096*y^24 + 47124*y^21 + 54120*y^18 + 45837*y^15 + 28380*y^12 + 12518*y^9 + 3732*y^6 + 675*y^3 + 56)*x^9 + (28*y^45 + 420*y^42 + 2940*y^39 + 12740*y^36 + 38220*y^33 + 84084*y^30 + 140140*y^27 + 180180*y^24 + 180180*y^21 + 140140*y^18 + 84084*y^15 + 38220*y^12 + 12740*y^9 + 2940*y^6 + 420*y^3 + 28)*x^6 + (8*y^54 + 144*y^51 + 1224*y^48 + 6528*y^45 + 24480*y^42 + 68544*y^39 + 148512*y^36 + 254592*y^33 + 350064*y^30 + 388960*y^27 + 350064*y^24 + 254592*y^21 + 148512*y^18 + 68544*y^15 + 24480*y^12 + 6528*y^9 + 1224*y^6 + 144*y^3 + 8)*x^3 + (y^63 + 21*y^60 + 210*y^57 + 1330*y^54 + 5985*y^51 + 20349*y^48 + 54264*y^45 + 116280*y^42 + 203490*y^39 + 293930*y^36 + 352716*y^33 + 352716*y^30 + 293930*y^27 + 203490*y^24 + 116280*y^21 + 54264*y^18 + 20349*y^15 + 5985*y^12 + 1330*y^9 + 210*y^6 + 21*y^3 + 1))/(y^8*x^21), (x^63 + (15*y^6 + 39*y^3 + 21)*x^60 + (6*y^15 + 165*y^12 + 684*y^9 + 1122*y^6 + 804*y^3 + 210)*x^57 + (127*y^21 + 1697*y^18 + 7990*y^15 + 18938*y^12 + 25258*y^9 + 19268*y^6 + 7858*y^3 + 1330)*x^54 + (39*y^30 + 1596*y^27 + 16074*y^24 + 77496*y^21 + 218019*y^18 + 389400*y^15 + 456825*y^12 + 352080*y^9 + 172050*y^6 + 48420*y^3 + 5985)*x^51 + (3*y^39 + 807*y^36 + 16275*y^33 + 137418*y^30 + 657468*y^27 + 2022132*y^24 + 4261593*y^21 + 6359517*y^18 + 6807642*y^15 + 5208588*y^12 + 2786064*y^9 + 991221*y^6 + 210987*y^3 + 20349)*x^48 + (236*y^45 + 10130*y^42 + 142440*y^39 + 1059310*y^36 + 4967272*y^33 + 16031256*y^30 + 37415280*y^27 + 64990980*y^24 + 85322700*y^21 + 85096274*y^18 + 64192184*y^15 + 36072150*y^12 + 14650240*y^9 + 4067140*y^6 + 691152*y^3 + 54264)*x^45 + (30*y^54 + 4170*y^51 + 98604*y^48 + 1096212*y^45 + 7375134*y^42 + 33698790*y^39 + 111511296*y^36 + 277898400*y^33 + 534570894*y^30 + 805740078*y^27 + 959080980*y^24 + 903085092*y^21 + 669797778*y^18 + 386941962*y^15 + 170623944*y^12 + 55503720*y^9 + 12559716*y^6 + 1766232*y^3 + 116280)*x^42 + (1170*y^60 + 48816*y^57 + 802116*y^54 + 7499664*y^51 + 46409274*y^48 + 206049600*y^45 + 689210928*y^42 + 1792490688*y^39 + 3701668932*y^36 + 6154136352*y^33 + 8306864280*y^30 + 9140627808*y^27 + 8200118628*y^24 + 5973694272*y^21 + 3503549232*y^18 + 1630491840*y^15 + 588491946*y^12 + 158875056*y^9 + 30200004*y^6 + 3605904*y^3 + 203490)*x^39 + (205*y^69 + 17700*y^66 + 437490*y^63 + 5610920*y^60 + 45819735*y^57 + 263784410*y^54 + 1136433510*y^51 + 3806861850*y^48 + 10175478690*y^45 + 22094802080*y^42 + 39460102500*y^39 + 58445545080*y^36 + 72146756110*y^33 + 74377242300*y^30 + 63989355580*y^27 + 45778331340*y^24 + 27047062305*y^21 + 13054330380*y^18 + 5063587210*y^15 + 1540401360*y^12 + 354006795*y^9 + 57792410*y^6 + 5973630*y^3 + 293930)*x^36 + (15*y^78 + 4686*y^75 + 183381*y^72 + 3229248*y^69 + 34295493*y^66 + 250373046*y^63 + 1351480515*y^60 + 5645741244*y^57 + 18820148622*y^54 + 51148149492*y^51 + 115082515614*y^48 + 216745997520*y^45 + 344371973946*y^42 + 463955273628*y[+++] (16:09) gp > "sobre Q(a): x^5-x-a" "sobre Q(a): x^5-x-a"