(11:25) gp > for(n=1,10000,if(eulerphi(n)==8,print(n))) 15 16 20 24 30 --- (12:11) gp > factormod(x^3-1,2) %1 = [ Mod(1, 2)*x + Mod(1, 2) 1] [Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 1] (12:11) gp > factormod(x^3-x-1,2) %2 = [Mod(1, 2)*x^3 + Mod(1, 2)*x + Mod(1, 2) 1] --- (16:48) gp > x=[1,1,0;0,1,0;0,0,1] %1 = [1 1 0] [0 1 0] [0 0 1] (16:49) gp > y=[1,0,0;0,1,1;0,0,1] %2 = [1 0 0] [0 1 1] [0 0 1] (16:50) gp > x*y/x/y %3 = [1 0 1] [0 1 0] [0 0 1] (16:50) gp > z=x*y/x/y %4 = [1 0 1] [0 1 0] [0 0 1] (16:50) gp > x*z/x %5 = [1 0 1] [0 1 0] [0 0 1] (16:50) gp > y*z/y %6 = [1 0 1] [0 1 0] [0 0 1] (16:50) gp > x*z==z*x %7 = 1 (16:50) gp > y*z==z*y %8 = 1 (16:50) gp > x^2 %9 = [1 2 0] [0 1 0] [0 0 1] (16:50) gp > x^3 %10 = [1 3 0] [0 1 0] [0 0 1] (16:50) gp > z^2 %11 = [1 0 2] [0 1 0] [0 0 1] (18:46) gp > factormod(x^3-x-1,2) %1 = [Mod(1, 2)*x^3 + Mod(1, 2)*x + Mod(1, 2) 1] (18:47) gp > factormod(x^3-x^2-1,2) %2 = [Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2) 1] (18:48) gp > factormod(x^3-x^2-x-1,2) %1 = [Mod(1, 2)*x + Mod(1, 2) 3] %19 = [10 6 6] [27 17 14] [32 20 16] (19:19) gp > matdet(%) %20 = -8 (19:19) gp > snf(%19) %21 = [4, 2, 1] (19:28) gp > factormod(x^4-x,2) %36 = [ Mod(1, 2)*x 1] [ Mod(1, 2)*x + Mod(1, 2) 1] [Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 1] (19:30) gp > factormod(x^9-x,2) %37 = [ Mod(1, 2)*x 1] [Mod(1, 2)*x + Mod(1, 2) 8] (19:30) gp > factormod(x^6-x,2) %38 = [ Mod(1, 2)*x 1] [ Mod(1, 2)*x + Mod(1, 2) 1] [Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 1]