Logging to /Users/s/tmp/pari-24.03 GPRC Done. GP/PARI CALCULATOR Version 2.12.0 (alpha) i386 running darwin (x86-64/GMP-6.0.0 kernel) 64-bit version compiled: Jun 3 2019, Apple LLVM version 6.0 (clang-600.0.57) threading engine: single (readline v6.3 enabled, extended help enabled) Copyright (C) 2000-2019 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?17 for how to get moral (and possibly technical) support. parisize = 40000000, primelimit = 1000000 Logging to /Users/s/tmp/pari-24.03 GPRC Done. GP/PARI CALCULATOR Version 2.12.0 (alpha) i386 running darwin (x86-64/GMP-6.0.0 kernel) 64-bit version compiled: Jun 3 2019, Apple LLVM version 6.0 (clang-600.0.57) threading engine: single (readline v6.3 enabled, extended help enabled) Copyright (C) 2000-2019 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?17 for how to get moral (and possibly technical) support. parisize = 40000000, primelimit = 1000000 (15:12) gp > ? Help topics: for a list of relevant subtopics, type ?n for n in 0: user-defined functions (aliases, installed and user functions) 1: PROGRAMMING under GP 2: Standard monadic or dyadic OPERATORS 3: CONVERSIONS and similar elementary functions 4: functions related to COMBINATORICS 5: NUMBER THEORETICAL functions 6: POLYNOMIALS and power series 7: Vectors, matrices, LINEAR ALGEBRA and sets 8: TRANSCENDENTAL functions 9: SUMS, products, integrals and similar functions 10: General NUMBER FIELDS 11: Associative and central simple ALGEBRAS 12: ELLIPTIC CURVES 13: L-FUNCTIONS 14: MODULAR FORMS 15: MODULAR SYMBOLS 16: GRAPHIC functions 17: The PARI community Also: ? functionname (short on-line help) ?\ (keyboard shortcuts) ?. (member functions) Extended help (if available): ?? (opens the full user's manual in a dvi previewer) ?? tutorial / refcard / libpari (tutorial/reference card/libpari manual) ?? refcard-ell (or -lfun/-mf/-nf: specialized reference card) ?? keyword (long help text about "keyword" from the user's manual) ??? keyword (a propos: list of related functions). (15:12) gp > ? Help topics: for a list of relevant subtopics, type ?n for n in 0: user-defined functions (aliases, installed and user functions) 1: PROGRAMMING under GP 2: Standard monadic or dyadic OPERATORS 3: CONVERSIONS and similar elementary functions 4: functions related to COMBINATORICS 5: NUMBER THEORETICAL functions 6: POLYNOMIALS and power series 7: Vectors, matrices, LINEAR ALGEBRA and sets 8: TRANSCENDENTAL functions 9: SUMS, products, integrals and similar functions 10: General NUMBER FIELDS 11: Associative and central simple ALGEBRAS 12: ELLIPTIC CURVES 13: L-FUNCTIONS 14: MODULAR FORMS 15: MODULAR SYMBOLS 16: GRAPHIC functions 17: The PARI community Also: ? functionname (short on-line help) ?\ (keyboard shortcuts) ?. (member functions) Extended help (if available): ?? (opens the full user's manual in a dvi previewer) ?? tutorial / refcard / libpari (tutorial/reference card/libpari manual) ?? refcard-ell (or -lfun/-mf/-nf: specialized reference card) ?? keyword (long help text about "keyword" from the user's manual) ??? keyword (a propos: list of related functions). (15:15) gp > ?6 O bezoutres deriv derivn diffop eval factorpadic intformal padicappr padicfields polchebyshev polclass polcoef polcoeff polcyclo polcyclofactors poldegree poldisc poldiscfactors poldiscreduced polgraeffe polhensellift polhermite polinterpolate poliscyclo poliscycloprod polisirreducible pollaguerre pollead pollegendre polmodular polrecip polresultant polresultantext polroots polrootsbound polrootsff polrootsmod polrootspadic polrootsreal polsturm polsubcyclo polsylvestermatrix polsym poltchebi polteichmuller polzagier serconvol serlaplace serreverse subst substpol substvec sumformal taylor thue thueinit (15:15) gp > ? Help topics: for a list of relevant subtopics, type ?n for n in 0: user-defined functions (aliases, installed and user functions) 1: PROGRAMMING under GP 2: Standard monadic or dyadic OPERATORS 3: CONVERSIONS and similar elementary functions 4: functions related to COMBINATORICS 5: NUMBER THEORETICAL functions 6: POLYNOMIALS and power series 7: Vectors, matrices, LINEAR ALGEBRA and sets 8: TRANSCENDENTAL functions 9: SUMS, products, integrals and similar functions 10: General NUMBER FIELDS 11: Associative and central simple ALGEBRAS 12: ELLIPTIC CURVES 13: L-FUNCTIONS 14: MODULAR FORMS 15: MODULAR SYMBOLS 16: GRAPHIC functions 17: The PARI community Also: ? functionname (short on-line help) ?\ (keyboard shortcuts) ?. (member functions) Extended help (if available): ?? (opens the full user's manual in a dvi previewer) ?? tutorial / refcard / libpari (tutorial/reference card/libpari manual) ?? refcard-ell (or -lfun/-mf/-nf: specialized reference card) ?? keyword (long help text about "keyword" from the user's manual) ??? keyword (a propos: list of related functions). (15:15) gp > 5+2 %1 = 7 (15:15) gp > 5*2 %2 = 10 (15:15) gp > 2==2 %3 = 1 (15:15) gp > 2==1 %4 = 0 (15:15) gp > 2>1 %5 = 1 (15:15) gp > isprime(2) %6 = 1 (15:15) gp > isprime(3) %7 = 1 (15:16) gp > isprime(4) %8 = 0 (15:16) gp > prime(2) %9 = 3 (15:16) gp > prime(3) %10 = 5 (15:16) gp > vector(10,n,prime(n)) %11 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] (15:16) gp > ?prime prime(n): returns the n-th prime (n C-integer). (15:16) gp > ?gcd gcd(x,{y}): greatest common divisor of x and y. (15:16) gp > gcd(6,10) %12 = 2 (15:16) gp > gcd(1935634,3485634965) %13 = 1 (15:16) gp > Mod(1935634,3485634965) %14 = Mod(1935634, 3485634965) (15:17) gp > 1/% %15 = Mod(3047292914, 3485634965) (15:17) gp > 1935634*3047292914 %16 = 5898443772297476 (15:17) gp > Mod(%,3485634965) %17 = Mod(1, 3485634965) (15:17) gp > 5898443772297476/3485634965 %18 = 5898443772297476/3485634965 (15:17) gp > round(5898443772297476/3485634965) %19 = 1692215 (15:17) gp > 3485634965*1692215 %20 = 5898443772297475 (15:17) gp > 3485634965*1692215+1==3485634965*1692215 %21 = 0 (15:18) gp > ?Mod Mod(a,b): create 'a modulo b'. (15:18) gp > Mod(2,5) %22 = Mod(2, 5) (15:18) gp > a=Mod(2,5) %23 = Mod(2, 5) (15:19) gp > a*a %24 = Mod(4, 5) (15:19) gp > a+a %25 = Mod(4, 5) (15:19) gp > 1/a %26 = Mod(3, 5) (15:19) gp > ?lift lift(x,{v}): if v is omitted, lifts elements of Z/nZ to Z, of Qp to Q, and of K[x]/(P) to K[x]. Otherwise lift only polmods with main variable v. (15:19) gp > ?liftmod liftmod: unknown identifier (15:19) gp > ?liftint liftint(x): lifts every element of Z/nZ to Z and of Qp to Q. (15:19) gp > liftint(Mod(1/2ˆ1000,1093)) *** expected character: ',' or ')' instead of: *** liftint(Mod(1/2ˆ1000,1093)) *** ^------------- (15:19) gp > liftint(Mod(1/2ˆ1000,1093))) *** syntax error, unexpected ')', expecting $end: *** ...tint(Mod(1/2ˆ1000,1093))) *** ^- (15:19) gp > liftint(Mod(1/2ˆ1000,1093)) *** expected character: ',' or ')' instead of: *** liftint(Mod(1/2ˆ1000,1093)) *** ^------------- (15:19) gp > liftint(Mod(1/21000,1093)) %27 = 835 (15:20) gp > 2^2 %28 = 4 (15:20) gp > 2^10 %29 = 1024 (15:20) gp > Mod(2^10,1093) %30 = Mod(1024, 1093) (15:21) gp > Mod(2^40,1093) %31 = Mod(487, 1093) (15:21) gp > Mod(2^2^10,1093) %32 = Mod(23, 1093) (15:21) gp > 1/Mod(2^2^10,1093) %33 = Mod(998, 1093) (15:21) gp > vector(6,n,Mod(1/n,7)) %34 = [Mod(1, 7), Mod(4, 7), Mod(5, 7), Mod(2, 7), Mod(3, 7), Mod(6, 7)] (15:21) gp > lift(%) %35 = [1, 4, 5, 2, 3, 6] (15:21) gp > vector(6,n,Mod(n^2,7)) %36 = [Mod(1, 7), Mod(4, 7), Mod(2, 7), Mod(2, 7), Mod(4, 7), Mod(1, 7)] (15:22) gp > vector(6,n,lift(Mod(n^2,7))) %37 = [1, 4, 2, 2, 4, 1] (15:23) gp > ?issquare issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is given puts the exact square root there if it was computed. (15:23) gp > issquare(Mod(2,7)) %38 = 1 (15:23) gp > issquare(Mod(3,7)) %39 = 0 (15:23) gp > Mod(3,7)*Mod(5,7) %40 = Mod(1, 7) (15:23) gp > Mod(3,7)*Mod(6,7) %41 = Mod(4, 7) (15:24) gp > Mod(5,7)*Mod(6,7) %42 = Mod(2, 7) (15:24) gp > ?prime prime(n): returns the n-th prime (n C-integer). (15:24) gp > vector(20,n,prime(n)) %43 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] (15:24) gp > vector(1000,n,prime(n)) %44 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919] (15:24) gp > vector(20,n,prime(n)) %45 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] (15:25) gp > p=71 %46 = 71 (15:25) gp > vector(n,p-1,Mod(n,p)^2) *** variable name expected: vector(n,p-1,Mod(n,p)^2) *** ^--------------- (15:25) gp > ?p p: user defined variable (15:25) gp > p %47 = 71 (15:25) gp > p-1 %48 = 70 (15:25) gp > vector(p-1,n,Mod(n,p)^2) %49 = [Mod(1, 71), Mod(4, 71), Mod(9, 71), Mod(16, 71), Mod(25, 71), Mod(36, 71), Mod(49, 71), Mod(64, 71), Mod(10, 71), Mod(29, 71), Mod(50, 71), Mod(2, 71), Mod(27, 71), Mod(54, 71), Mod(12, 71), Mod(43, 71), Mod(5, 71), Mod(40, 71), Mod(6, 71), Mod(45, 71), Mod(15, 71), Mod(58, 71), Mod(32, 71), Mod(8, 71), Mod(57, 71), Mod(37, 71), Mod(19, 71), Mod(3, 71), Mod(60, 71), Mod(48, 71), Mod(38, 71), Mod(30, 71), Mod(24, 71), Mod(20, 71), Mod(18, 71), Mod(18, 71), Mod(20, 71), Mod(24, 71), Mod(30, 71), Mod(38, 71), Mod(48, 71), Mod(60, 71), Mod(3, 71), Mod(19, 71), Mod(37, 71), Mod(57, 71), Mod(8, 71), Mod(32, 71), Mod(58, 71), Mod(15, 71), Mod(45, 71), Mod(6, 71), Mod(40, 71), Mod(5, 71), Mod(43, 71), Mod(12, 71), Mod(54, 71), Mod(27, 71), Mod(2, 71), Mod(50, 71), Mod(29, 71), Mod(10, 71), Mod(64, 71), Mod(49, 71), Mod(36, 71), Mod(25, 71), Mod(16, 71), Mod(9, 71), Mod(4, 71), Mod(1, 71)] (15:26) gp > ?vector vector(n,{X},{expr=0}): row vector with n components of expression expr (X ranges from 1 to n). By default, fills with 0s. (15:26) gp > ??vector vector(n,{X},{expr = 0}): Creates a row vector (type t_VEC) with n components whose components are the expression expr evaluated at the integer points between 1 and n. If the last two arguments are omitted, fills the vector with zeroes. ? vector(3,i, 5*i) %1 = [5, 10, 15] ? vector(3) %2 = [0, 0, 0] The variable X is lexically scoped to each evaluation of expr. Any change to X within expr does not affect subsequent evaluations, it still runs 1 to n. A local change allows for example different indexing: /*-- (type RETURN to continue) --*/ vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9 vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20 This per-element scope for X differs from for loop evaluations, as the following example shows: n = 3 v = vector(n); vector(n, i, i++) ----> [2, 3, 4] v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4] (15:26) gp > ? Help topics: for a list of relevant subtopics, type ?n for n in 0: user-defined functions (aliases, installed and user functions) 1: PROGRAMMING under GP 2: Standard monadic or dyadic OPERATORS 3: CONVERSIONS and similar elementary functions 4: functions related to COMBINATORICS 5: NUMBER THEORETICAL functions 6: POLYNOMIALS and power series 7: Vectors, matrices, LINEAR ALGEBRA and sets 8: TRANSCENDENTAL functions 9: SUMS, products, integrals and similar functions 10: General NUMBER FIELDS 11: Associative and central simple ALGEBRAS 12: ELLIPTIC CURVES 13: L-FUNCTIONS 14: MODULAR FORMS 15: MODULAR SYMBOLS 16: GRAPHIC functions 17: The PARI community Also: ? functionname (short on-line help) ?\ (keyboard shortcuts) ?. (member functions) Extended help (if available): ?? (opens the full user's manual in a dvi previewer) ?? tutorial / refcard / libpari (tutorial/reference card/libpari manual) ?? refcard-ell (or -lfun/-mf/-nf: specialized reference card) ?? keyword (long help text about "keyword" from the user's manual) ??? keyword (a propos: list of related functions). (15:26) gp > ?vector vector(n,{X},{expr=0}): row vector with n components of expression expr (X ranges from 1 to n). By default, fills with 0s. (15:26) gp > vector(p-1,n,Mod(n,p)^2) %50 = [Mod(1, 71), Mod(4, 71), Mod(9, 71), Mod(16, 71), Mod(25, 71), Mod(36, 71), Mod(49, 71), Mod(64, 71), Mod(10, 71), Mod(29, 71), Mod(50, 71), Mod(2, 71), Mod(27, 71), Mod(54, 71), Mod(12, 71), Mod(43, 71), Mod(5, 71), Mod(40, 71), Mod(6, 71), Mod(45, 71), Mod(15, 71), Mod(58, 71), Mod(32, 71), Mod(8, 71), Mod(57, 71), Mod(37, 71), Mod(19, 71), Mod(3, 71), Mod(60, 71), Mod(48, 71), Mod(38, 71), Mod(30, 71), Mod(24, 71), Mod(20, 71), Mod(18, 71), Mod(18, 71), Mod(20, 71), Mod(24, 71), Mod(30, 71), Mod(38, 71), Mod(48, 71), Mod(60, 71), Mod(3, 71), Mod(19, 71), Mod(37, 71), Mod(57, 71), Mod(8, 71), Mod(32, 71), Mod(58, 71), Mod(15, 71), Mod(45, 71), Mod(6, 71), Mod(40, 71), Mod(5, 71), Mod(43, 71), Mod(12, 71), Mod(54, 71), Mod(27, 71), Mod(2, 71), Mod(50, 71), Mod(29, 71), Mod(10, 71), Mod(64, 71), Mod(49, 71), Mod(36, 71), Mod(25, 71), Mod(16, 71), Mod(9, 71), Mod(4, 71), Mod(1, 71)] (15:26) gp > vector(p-1,n,lift(Mod(n,p)^2)) %51 = [1, 4, 9, 16, 25, 36, 49, 64, 10, 29, 50, 2, 27, 54, 12, 43, 5, 40, 6, 45, 15, 58, 32, 8, 57, 37, 19, 3, 60, 48, 38, 30, 24, 20, 18, 18, 20, 24, 30, 38, 48, 60, 3, 19, 37, 57, 8, 32, 58, 15, 45, 6, 40, 5, 43, 12, 54, 27, 2, 50, 29, 10, 64, 49, 36, 25, 16, 9, 4, 1] (15:26) gp > ?lift lift(x,{v}): if v is omitted, lifts elements of Z/nZ to Z, of Qp to Q, and of K[x]/(P) to K[x]. Otherwise lift only polmods with main variable v. (15:26) gp > sort(%51) *** at top-level: sort(%51) *** ^--------- *** not a function in function call A function with that name existed in GP-1.39.15. Please update your script. New syntax: sort(x) ===> vecsort(x) vecsort(x,{cmpf},{flag=0}): sorts the vector of vectors (or matrix) x in ascending order, according to the comparison function cmpf, if not omitted. (If cmpf is an integer k, sort according to the value of the k-th component of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting, return the permutation instead of the permuted vector, 4: use descending instead of ascending order, 8: remove duplicate entries. *** Break loop: type 'break' to go back to GP prompt break> vecsort(%51) [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 9, 10, 10, 12, 12, 15, 15, 16, 16, 18, 18, 19, 19, 20, 20, 24, 24, 25, 25, 27, 27, 29, 29, 30, 30, 32, 32, 36, 36, 37, 37, 38, 38, 40, 40, 43, 43, 45, 45, 48, 48, 49, 49, 50, 50, 54, 54, 57, 57, 58, 58, 60, 60, 64, 64] break> ?vecsort vecsort(x,{cmpf},{flag=0}): sorts the vector of vectors (or matrix) x in ascending order, according to the comparison function cmpf, if not omitted. (If cmpf is an integer k, sort according to the value of the k-th component of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting, return the permutation instead of the permuted vector, 4: use descending instead of ascending order, 8: remove duplicate entries. break> vecsort(%51,,8) [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 19, 20, 24, 25, 27, 29, 30, 32, 36, 37, 38, 40, 43, 45, 48, 49, 50, 54, 57, 58, 60, 64] break> #% 70 break> break (15:27) gp > vecsort(%51,,8) %52 = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 19, 20, 24, 25, 27, 29, 30, 32, 36, 37, 38, 40, 43, 45, 48, 49, 50, 54, 57, 58, 60, 64] (15:27) gp > #% %53 = 35 (15:27) gp > for(n=1,p-1,for(m=1,p-1,issquare(Mod(n,p))+issq *** syntax error, unexpected $end, expecting )-> or *** ',' or ')': ...-1,issquare(Mod(n,p))+issq *** ^- (15:28) gp > f(n)=1-issquare(n,p) *** expected character: '&': f(n)=1-issquare(n,p) *** ^-- (15:28) gp > ?issquare issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is given puts the exact square root there if it was computed. (15:28) gp > f(n)=1-issquare(Mod(n,p)) %54 = (n)->1-issquare(Mod(n,p)) (15:29) gp > f(2) %55 = 0 (15:29) gp > issquare(Mod(2,71)) %56 = 1 (15:29) gp > vector(p-1,n,f(n)) %57 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1] (15:29) gp > matrix(p-1,p-1,n,m,f(n)+f(m)+f(n*m)) time = 16 ms. %58 = [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] (15:29) gp > %~ %59 = [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] (15:30) gp > M=% %60 = [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] (15:30) gp > Mod(M,2) %61 = [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] (15:30) gp > lift(%) %62 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (15:30) gp > M==0 %63 = 0 (15:30) gp > M==matrix(70,70) %64 = 0 (15:30) gp > M==matrix(70,70,n,m,0) %65 = 0 (15:30) gp > matsize(M) %66 = [70, 70] (15:30) gp > M*vector(70,n,1) *** at top-level: M*vector(70,n,1) *** ^--------------- *** _*_: inconsistent operation 'RgM_RgV_mul' t_MAT (70x70) , t_VEC (70 elts). *** Break loop: type 'break' to go back to GP prompt break> break (15:31) gp > M*vectorv(70,n,1) time = 1 ms. %67 = [70, 70, 70, 70, 70, 70, 140, 70, 70, 70, 140, 70, 140, 140, 70, 70, 140, 70, 70, 70, 140, 140, 140, 70, 70, 140, 70, 140, 70, 70, 140, 70, 140, 140, 140, 70, 70, 70, 140, 70, 140, 140, 70, 140, 70, 140, 140, 70, 70, 70, 140, 140, 140, 70, 140, 140, 70, 70, 140, 70, 140, 140, 140, 70, 140, 140, 140, 140, 140, 140]~ (15:31) gp > V=vectorv(70,n,1) %68 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]~ (15:31) gp > V~ %69 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (15:31) gp > mattranspose(V) %70 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (15:31) gp > [2,3;4,5] %71 = [2 3] [4 5] (15:31) gp > N=[2,3;4,5] %72 = [2 3] [4 5] (15:31) gp > matdet(N) %73 = -2 (15:31) gp > mattranspose(N) %74 = [2 4] [3 5] (15:31) gp > ?M M: user defined variable (15:31) gp > matsize(M) %75 = [70, 70] (15:31) gp > matsize(V) %76 = [70, 1] (15:31) gp > M*V %77 = [70, 70, 70, 70, 70, 70, 140, 70, 70, 70, 140, 70, 140, 140, 70, 70, 140, 70, 70, 70, 140, 140, 140, 70, 70, 140, 70, 140, 70, 70, 140, 70, 140, 140, 140, 70, 70, 70, 140, 70, 140, 140, 70, 140, 70, 140, 140, 70, 70, 70, 140, 140, 140, 70, 140, 140, 70, 70, 140, 70, 140, 140, 140, 70, 140, 140, 140, 140, 140, 140]~ (15:31) gp > V~*M*V %78 = 7350 (15:32) gp > M %79 = [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] (15:32) gp > Mod(M,2) %80 = [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] [Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2) Mod(0, 2)] (15:32) gp > lift(%) %81 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (15:32) gp > M2=% %82 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (15:32) gp > M2==matrix(70,70) %83 = 1 (15:32) gp > matrix(5,5) %84 = [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] (15:32) gp > matrix(5,5,a,b,a-b) %85 = [0 -1 -2 -3 -4] [1 0 -1 -2 -3] [2 1 0 -1 -2] [3 2 1 0 -1] [4 3 2 1 0] (15:32) gp > for(a=1,70,for(b=1,70,lift(Mod(f(a)+f(b)+f(a*b),2)))) time = 13 ms. (15:34) gp > for(a=1,70,for(b=1,70,sumt(Mod(f(a)+f(b)+f(a*b),2)))) *** at top-level: for(a=1,70,for(b=1,70, *** sumt(Mod(f(a)+f(b)+f(a*b *** ^------------------------ *** not a function in function call *** Break loop: type 'break' to go back to GP prompt break> break (15:35) gp > sum(a=1,70,sum(b=1,70,lift(Mod(f(a)+f(b)+f(a*b),2)))) time = 11 ms. %87 = 0 (15:35) gp > ?f f = (n)->1-issquare(Mod(n,p)) (15:35) gp > g(n)=Mod(f(n),2) %88 = (n)->Mod(f(n),2) (15:36) gp > sum(a=1,70,sum(b=1,70,g(a)+g(b)+g(a*b))) time = 17 ms. %89 = Mod(0, 2) (15:36) gp > sum(a=1,70,sum(b=1,70,lift(g(a)+g(b)+g(a*b)))) time = 18 ms. %90 = 0 (15:36) gp > h(a,b)=g(a*b)-g(a)-g(b) %91 = (a,b)->g(a*b)-g(a)-g(b) (15:44) gp > h(a,b)=lift(g(a*b)-g(a)-g(b)) %92 = (a,b)->lift(g(a*b)-g(a)-g(b)) (15:44) gp > sum(a=1,70,sum(b=1,70,h(a,b)) *** syntax error, unexpected $end, expecting )-> or ',' or *** ')': ...(a=1,70,sum(b=1,70,h(a,b)) *** ^- (15:44) gp > sum(a=1,70,sum(b=1,70,h(a,b))) time = 17 ms. %93 = 0 (15:44) gp > issquare(Mod(4,7)) %94 = 1 (15:45) gp > Mod(4,7)^(1/2) %95 = Mod(2, 7) (15:45) gp > sqrt(Mod(2,7)) %96 = Mod(3, 7) (15:45) gp > sqrt(Mod(3,7)) *** at top-level: sqrt(Mod(3,7)) *** ^-------------- *** sqrt: not an n-th power residue in gsqrt: Mod(3, 7). *** Break loop: type 'break' to go back to GP prompt break> break (15:45) gp > isprime(5) %97 = 1 (15:46) gp > isprime(6) %98 = 0 (15:46) gp > factor(5) %99 = [5 1] (15:46) gp > factor(6) %100 = [2 1] [3 1] (15:46) gp > Mod(2,6) %101 = Mod(2, 6) (15:46) gp > 1/Mod(2,6) *** at top-level: 1/Mod(2,6) *** ^--------- *** _/_: impossible inverse in Fp_inv: Mod(2, 6). *** Break loop: type 'break' to go back to GP prompt break> break (15:46) gp > g(n)=if(n==1,1,lcm(n,g(n-1))) %102 = (n)->if(n==1,1,lcm(n,g(n-1))) (15:47) gp > g(2) %103 = 2 (15:47) gp > g(3) %104 = 6 (15:48) gp > vector(10,n,g(n)) %105 = [1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520] (15:48) gp > g(10^20) *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** deep recursion. *** Break loop: type 'break' to go back to GP prompt break> break *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** expression nested too deeply. *** Break loop: type 'break' to go back to GP prompt break[2]> break *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** expression nested too deeply. *** Break loop: type 'break' to go back to GP prompt break[3]> break *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** expression nested too deeply. *** Break loop: type 'break' to go back to GP prompt break[4]> break *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** expression nested too deeply. *** Break loop: type 'break' to go back to GP prompt *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** [...] at: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- *** in function g: if(n==1,1,lcm(n,g(n-1))) *** ^-------- (15:48) gp > g(100 *** syntax error, unexpected $end, expecting )-> or ',' or *** ')': g(100 *** ^- (15:48) gp > g(100) %106 = 69720375229712477164533808935312303556800 (15:48) gp > log(%) %107 = 94.045311229357392246004931244606927241 (15:48) gp > log(g(200)) %108 = 206.14585682505475534913882536694769505 (15:48) gp > exp(94) %109 = 6.6631762164108958342448140502408732627 E40 (15:48) gp > g(100)/exp(100) %110 = 0.0025936509293121155884305320385687269229 (15:49) gp > g(1000)/exp(1000) time = 1 ms. %111 = 0.036185827120367631032571390629690054690 (15:49) gp > 1000! %112 = 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 (15:49) gp > log(1000!) %113 = 5912.1281784881633488781308867254938825 (15:49) gp > log(g(1000)) time = 1 ms. %114 = 996.68091224717524026302176566642154167 (15:49) gp > ?factorial factorial(x): factorial of x, the result being given as a real number. (15:49) gp > 5! %115 = 120 (15:49) gp > factorial(5) %116 = 120.00000000000000000000000000000000000 (15:49) gp > vector(10,n,n!) %117 = [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] (15:49) gp > vector(10,n,g(n)) %118 = [1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520] (15:49) gp > \p2 realprecision = 19 significant digits (2 digits displayed) (15:50) gp > vector(10,n,g(n)) %119 = [1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520] (15:50) gp > vector(10,n,exp(n)) %120 = [2.7, 7.4, 2.0 E1, 5.5 E1, 1.5 E2, 4.0 E2, 1.1 E3, 3.0 E3, 8.1 E3, 2.2 E4] (15:50) gp > ?lcm lcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y) up to units. (15:50) gp > issquare(Mod(-1,7)) %121 = 0 (15:51) gp > issquare(Mod(-1,5)) %122 = 1 (15:51) gp > ?forprime forprime(p=a,{b},seq): the sequence is evaluated, p running over the primes between a and b. Omitting b runs through primes >= a. (15:51) gp > forprime(p=3,1000,issquare(Mod(-1,p))) time = 1 ms. (15:51) gp > forprime(p=3,1000,if(issquare(Mod(-1,p)),print(p))) 5 13 17 29 37 41 53 61 73 89 97 101 109 113 137 149 157 173 181 193 197 229 233 241 257 269 277 281 293 313 317 337 349 353 373 389 397 401 409 421 433 449 457 461 509 521 541 557 569 577 593 601 613 617 641 653 661 673 677 701 709 733 757 761 769 773 797 809 821 829 853 857 877 881 929 937 941 953 977 997 time = 1 ms. (15:52) gp > forprime(p=3,100,if(issquare(Mod(-1,p)),print(p))) 5 13 17 29 37 41 53 61 73 89 97 (15:52) gp > forprime(p=3,100,if(issquare(Mo!d(-1,p)),print(p))) *** expected character: ',' or ')' instead of: *** ...e(p=3,100,if(issquare(Mo!d(-1,p)),print(p))) *** ^------------------- (15:52) gp > forprime(p=3,100,if(!issquare(Mod(-1,p)),print(p))) 3 7 11 19 23 31 43 47 59 67 71 79 83 (15:52) gp > a=0 %127 = 0 (15:53) gp > f(p)=issquare(Mod(-1,p))-(Mod(p,4)==1) %128 = (p)->issquare(Mod(-1,p))-(Mod(p,4)==1) (15:53) gp > f(3) %129 = 0 (15:53) gp > f(5) %130 = 0 (15:53) gp > vector(20,n,f(prime(n))) %131 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (15:54) gp > f(2) %132 = 1 (15:54) gp > vector(20,n,prime(n)) %133 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] (15:54) gp > x^2+1 %134 = x^2 + 1 (15:55) gp > P=x^2+1 %135 = x^2 + 1 (15:55) gp > Mod(P,7) %136 = Mod(1, 7)*x^2 + Mod(1, 7) (15:55) gp > factor(%) %137 = [Mod(1, 7)*x^2 + Mod(1, 7) 1] (15:55) gp > factor(Mod(P,5)) %138 = [Mod(1, 5)*x + Mod(2, 5) 1] [Mod(1, 5)*x + Mod(3, 5) 1] (15:55) gp > factor(Mod(P,11)) %139 = [Mod(1, 11)*x^2 + Mod(1, 11) 1] (15:55) gp > factor(Mod(P,13)) %140 = [Mod(1, 13)*x + Mod(5, 13) 1] [Mod(1, 13)*x + Mod(8, 13) 1] (15:55) gp > sqrt(Mod(-1,13)) %141 = Mod(5, 13) (15:56) gp > 5^2+1 %142 = 26 (15:56) gp > factor(%) %143 = [ 2 1] [13 1] (15:56) gp > factor(x^5+7) %144 = [x^5 + 7 1] (15:57) gp > factor(x^5+5*x+1) %145 = [x^5 + 5*x + 1 1] (15:57) gp > factor(x^4+1) %146 = [x^4 + 1 1] (15:57) gp > factor(x^4+2) %147 = [x^4 + 2 1] (15:57) gp > factor(x^4+3) %148 = [x^4 + 3 1] (15:57) gp > factor(x^4+4) %149 = [x^2 - 2*x + 2 1] [x^2 + 2*x + 2 1] (15:57) gp > ?eulerphi eulerphi(x): Euler's totient function of x. (15:58) gp > vector(20,n,eulerphi(n)) %150 = [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8] (15:58) gp > eulerphi(71) %151 = 70 (15:58) gp > eulerphi(20) %152 = 8 (15:58) gp > myphi(n)=sum(k=1,n-1,gcd(k,n)==1) %153 = (n)->sum(k=1,n-1,gcd(k,n)==1) (15:59) gp > vector(20,n,myphi(n)) %154 = [0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8] (15:59) gp > vector(20,n,myphi(n)-eulerphi(n)) %155 = [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (15:59) gp > for(n=0,29,if(gcd(n,30)==1,print(n))) 1 7 11 13 17 19 23 29 (16:13) gp > C=[1,7,11,13,17,19,23,29] %157 = [1, 7, 11, 13, 17, 19, 23, 29] (16:14) gp > matrix(8,8,a,b,C[a]*C[b]) %158 = [ 1 7 11 13 17 19 23 29] [ 7 49 77 91 119 133 161 203] [11 77 121 143 187 209 253 319] [13 91 143 169 221 247 299 377] [17 119 187 221 289 323 391 493] [19 133 209 247 323 361 437 551] [23 161 253 299 391 437 529 667] [29 203 319 377 493 551 667 841] (16:15) gp > Mod(%,30) %159 = [Mod(1, 30) Mod(7, 30) Mod(11, 30) Mod(13, 30) Mod(17, 30) Mod(19, 30) Mod(23, 30) Mod(29, 30)] [Mod(7, 30) Mod(19, 30) Mod(17, 30) Mod(1, 30) Mod(29, 30) Mod(13, 30) Mod(11, 30) Mod(23, 30)] [Mod(11, 30) Mod(17, 30) Mod(1, 30) Mod(23, 30) Mod(7, 30) Mod(29, 30) Mod(13, 30) Mod(19, 30)] [Mod(13, 30) Mod(1, 30) Mod(23, 30) Mod(19, 30) Mod(11, 30) Mod(7, 30) Mod(29, 30) Mod(17, 30)] [Mod(17, 30) Mod(29, 30) Mod(7, 30) Mod(11, 30) Mod(19, 30) Mod(23, 30) Mod(1, 30) Mod(13, 30)] [Mod(19, 30) Mod(13, 30) Mod(29, 30) Mod(7, 30) Mod(23, 30) Mod(1, 30) Mod(17, 30) Mod(11, 30)] [Mod(23, 30) Mod(11, 30) Mod(13, 30) Mod(29, 30) Mod(1, 30) Mod(17, 30) Mod(19, 30) Mod(7, 30)] [Mod(29, 30) Mod(23, 30) Mod(19, 30) Mod(17, 30) Mod(13, 30) Mod(11, 30) Mod(7, 30) Mod(1, 30)] (16:15) gp > lift(%) %160 = [ 1 7 11 13 17 19 23 29] [ 7 19 17 1 29 13 11 23] [11 17 1 23 7 29 13 19] [13 1 23 19 11 7 29 17] [17 29 7 11 19 23 1 13] [19 13 29 7 23 1 17 11] [23 11 13 29 1 17 19 7] [29 23 19 17 13 11 7 1] (16:15) gp > g(n,p)=Mod(1-issquare(Mod(n,p)),2) %161 = (n,p)->Mod(1-issquare(Mod(n,p)),2) (16:47) gp > g(4,7) %162 = Mod(0, 2) (16:47) gp > g(2,7) %163 = Mod(0, 2) (16:47) gp > g(3,7) %164 = Mod(1, 2) (16:47) gp > ?legendre A function with that name existed in GP-1.39.15. Please update your script. New syntax: legendre(n) ===> pollegendre(n) pollegendre(n,{a='x},{flag=0}): legendre polynomial of degree n evaluated at a. If flag is 1, return [L_{n-1}(a), L_n(a)]. (16:48) gp > ?jacobi A function with that name existed in GP-1.39.15. Please update your script. New syntax: jacobi(x) ===> qfjacobi(x) qfjacobi(A): eigenvalues and orthogonal matrix of eigenvectors of the real symmetric matrix A. (16:48) gp > ?g g = (n,p)->Mod(1-issquare(Mod(n,p)),2) (16:48) gp > p=13 %165 = 13 (17:08) gp > t(n)=n^3 %166 = (n)->n^3 (17:08) gp > q(n)=n^4 %167 = (n)->n^4 (17:08) gp > vector(12,n,t(n) *** syntax error, unexpected $end, expecting )-> or ',' or *** ')': vector(12,n,t(n) *** ^- (17:08) gp > l(x)=lift(Mod(x,13)) %168 = (x)->lift(Mod(x,13)) (17:08) gp > vector(12,n,l(t(n))) %169 = [1, 8, 1, 12, 8, 8, 5, 5, 1, 12, 5, 12] (17:08) gp > vector(12,n,l(q(n))) %170 = [1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1] (17:09) gp > vector(12,n,l(n^12)) %171 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (17:09) gp > g(N)=p=prime(N);vector(p-1,n,l(n^(p-1))) %172 = (N)->p=prime(N);vector(p-1,n,l(n^(p-1))) (17:10) gp > g(1) %173 = [1] (17:10) gp > g(2) %174 = [1, 4] (17:10) gp > g(3) %175 = [1, 3, 3, 9] (17:10) gp > vector(70,n,lift(Mod(n,71)^70)) %176 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (17:10) gp > x^5-1 %177 = x^5 - 1 (17:11) gp > P=x^5-1 %178 = x^5 - 1 (17:11) gp > factor(P) %179 = [ x - 1 1] [x^4 + x^3 + x^2 + x + 1 1] (17:11) gp > factor(Mod(P,31)) %180 = [Mod(1, 31)*x + Mod(15, 31) 1] [Mod(1, 31)*x + Mod(23, 31) 1] [Mod(1, 31)*x + Mod(27, 31) 1] [Mod(1, 31)*x + Mod(29, 31) 1] [Mod(1, 31)*x + Mod(30, 31) 1] (17:11) gp > factor(Mod(P,17)) %181 = [Mod(1, 17)*x + Mod(16, 17) 1] [Mod(1, 17)*x^4 + Mod(1, 17)*x^3 + Mod(1, 17)*x^2 + Mod(1, 17)*x + Mod(1, 17) 1] (17:12) gp > vector(16,n,lift(Mod(n^5,17))) %182 = [1, 15, 5, 4, 14, 7, 11, 9, 8, 6, 10, 3, 13, 12, 2, 16] (17:12) gp > vecsort(%) %183 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]