[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Teorema de Green (questão)
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Teorema de Green (questão)
- From: "Daniel Kiss" <daniel.debian@xxxxxxxxx>
- Date: Sat, 15 Mar 2008 16:53:43 -0300
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; bh=6Tz9xt92j5UqIL5BHVqQ5ZPj6U63CMxxuKlqY3Xb5Yc=; b=Vlt5dWQ3UamA21rZ0os04d6CsPNcGo1XBCcOG2T90rHKEtC0dDS4uv5gybjA70sQRIPvpMUvpbXOR034+lQHV86MqOmdODKhjPTv8WIHpww52NNPSX6QG/7bg+/7SLboU4QWPWua0QFQ4YosXzLKEoWSfMKJxCNsVayR4rljcqQ=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=vYOjNakgkdwkyaHANDBKuDnYf9OYKN09592NaDKqZBoIE7SZXuse7Osg/rxmgrfTR23UYPwxaUPyXQDOViTvkZiMDT8vRw5tPVFNstgjWb7EyXiC6I1yQOzsWlULY53hO66C5wkShctx2b4lfRlqLCxrcwex0RgQ58Y1JTHERbw=
- In-reply-to: <235671.34421.qm@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
- References: <235671.34421.qm@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
- Reply-to: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
A região é fechada... vale o Teorema de Green, então:
integral de linha ao longo de C de F.dr = integral dupla na região
delimitada por C de dQ/dx - dP/dy
lembre-se que nesse caso, P(x,y)= exp(y) e Q(x,y)=x*exp(y)
Assim, dQ/dx - dP/dy = d(x*exp(y))/dx - d(exp(y))/dy = exp(y) - exp(y) = 0
A integral dupla em uma região da função constante zero é zero...
Portanto a integral de linha de Fdr ao longo de C é zero.
Em 13/03/08, César Santos<dassarf@xxxxxxxxxxxx> escreveu:
> A questão pede para calcular a integral de linha C de F.dr onde F(x,y) =
> e^yi + xe^yj
> E o caminho C é o contorno da região:
> 0<= x <= 1 (onde <= indica menor ou igual)
> arcsen(x) <=y<= pi/2.
>
> Eu já resolvi várias vezes a questão e encontrei a resposta 1, mas de
> acordo com o livro a resposta é 0. Alguém, por favor, poderia resolver a
> questão e indicar meu erro?
>
>
> ---------------------------------
> Abra sua conta no Yahoo! Mail, o único sem limite de espaço para
> armazenamento!
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================