[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] [obm-l] ENC: [obm-l] Questão de indução matemática



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (6.30 hits, 5 required)
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: NOSPAM_INC         (-0.2 points) Where are you working at?
SPAM: NO_REAL_NAME       (1.3 points)  From: does not include a real name
SPAM: INVALID_MSGID      (0.0 points)  Message-Id is not valid, according to RFC 2822
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 197.4.63.201.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 197.4.63.201.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: AWL                (-0.6 points) AWL: Auto-whitelist adjustment
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

Assunto: [obm-l] Questão de indução matemática

Caros companheiros do grupo, POR FAVOR, alguém poderia me ajudar?

1. Sabendo, por definição, que: a^0=1 e a^1=a, como poderemos provar por
indução matemática sobre n, que a^m.a^n = a^(m+n), para qualquer m,n
pertencente ao conjunto dos números naturais?

2. Como poderemos provar por indução matemática, as questões abaixo?
2.1. 1^2+ 2^2+...+n^2 = [n(n+1)(2n+1)]/6, (n maior igual 1);
2.2. 1^3+ 2^3+...+n^3 = (1+2+...+n)^2, (n maior igual 1);
2.3. 1.2+ 2.3+...+n(n+1) = [n(n+1)(n+2)]/3, (n maior igual 1);

TFA

Rubens


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================