[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Trigonometria



  Uma possível solução. Confira todas as contas, por favor!

No sistema dado, queremos eliminar sen(q) e cos(q). Primeiro reescrevemos o sistema assim:
   (x-2a)sen(q) + ycos(q) =0     (I)
       -ysen(q) + (x-a)cos(q)=0   (II)

É fácil ver que o sistema homogênio acima admite solução não-trivial em termos de das variáveis sen(q) e cos(q). Então
   (II) => ysen(q)=(x-a)cos(q)

Agora multiplicamos (I) por y e depois substituimos o resultado acima, o que dá:

  {(x-2a)(x-a)+y^2}cos(q) =0

Se cos(q)=0 então, de (I) e (II) temos que x=2a e y=0, pois neste caso sen(q) é diferente de zero.
  Caso contrário,
  (x-2a)(x-a)+y^2 =0  =>  (x-3a/2)^2 + y^2 = (a/2)^2

  De qualquer forma, concluo que a alternativa correta é D.

  inté


Citando Roger <roger.lbd@xxxxxxxxx>:

Caros,

Bom dia,

Uma ajuda para concluir a seguinte questão:

Eliminando q nas equações:

x.senq +ycosq =2asenq
xcosq -ysenq =acosq , a>0, temos:

a) [(x+y)^2/3] - [(x-y)^2/3] = 2a[(x+y)^2/3]
b) [(x+y)^2/3] + [(x-y)^2/3] = 2(a^2/3)
c) [(x+y)^2] + [(x-y)^2] = a(x+y)
d) nenhuma das respostas anteriores
e) impossível eliminar q

Grato.




--
Arlane Manoel S Silva
  MAT-IME-USP


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================