[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Integral
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Integral
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Sun, 6 May 2007 02:25:35 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=Ehj9dABxXbrqYIIFgRnTJcqfWWrlYKk+BnYwdXHv9lojldZoSfl2phfpP1z6ojcVO9Je0mVyPWq5qsvlIkMsif3/dEkT1iFdon7TOY/Tfv0ylVZ0CXK0BTcwA8bLk7oCg3CHiitvfTkqO/JpF6thm8z07OGFyajLHgpY1QkCLxk=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=WNfnEdzHPkplIUxxpVFobJtJtOFyGFenTrI55sl3ru8sXP4bEMOjjKCjeiGDaUIwxiDKKyOUcFoFQ44rh0D4lTRbAaYNFUJGikEd0lAd1KXkz9HKbQpfxwF5NgzgFhWeu7ybbK5TEMW4OgfDMk4QtXGlihYIVg0DIb7nyU63CYo=
- In-Reply-To: <4630D38F0001BB55@mail04.sc2.he.tucows.com>
- References: <4630D38F0001BB55@mail04.sc2.he.tucows.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Olá,
e^(2x)/sqrt[e^(6x) + 1]
hmm vamos fazer: e^(2x) = u ... 2e^(2x)dx = du ... 2udx = du ... dx = du/(2u)
assim, ficamos com
integral u/sqrt[u^3 + 1] * 1/(2u) * du = integral 1/sqrt[u^3 + 1] * 1/2 * du =
= 1/2 * integral 1/sqrt[u^3 + 1] du
bom.. fiz alguma tentativas pra resolver esta ultima.. mas falharam! :)
tentei fazer u^3 + 1 = r .... tbem tentei u^3 = [tg(r)]^2... mas
parece q as coisas soh pioraram! :)
ja ja alguem aparece com uma solucao :)
abracos,
Salhab
On 5/5/07, Marcus Aurélio <marcusaurelio80@globo.com> wrote:
> Alguem sabe como resolver essa integral?
> integral de 1 a mais infinito de e^2x sobre raiz quadrada de e^6x +1
>
>
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================