[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] LIMITES



b)
aplicando L'Hopital, temos:
 
nx^(n-1)/[n(lnx)^n . (1/x)] = (x/lnx)^n -> (a/lna)^n, qdo x->a, para "a" finito a diferente de 0.
se a = 0, (x/lnx)^n -> 0
se a = +inf, (x/lnx)^n -> +inf
 
abraços,
Salhab
 
----- Original Message -----
Sent: Tuesday, May 02, 2006 12:50 AM
Subject: Re: [obm-l] LIMITES

a) Fazendo x=1/y quando x->0+ y->+inf.
x^x = (1/y)^(1/y) = exp(-ln(y)/y)
Observe que y cresce mais rápido que ln(y), logo o expoente tende a zero e o limite de x^x tende a 1
 
Ojesed.
----- Original Message -----
Sent: Friday, April 28, 2006 2:42 PM
Subject: [obm-l] LIMITES

a) lim(x->0+) x^x
b)lim(x->a) (x^n-a^n)/((lnx)^n-(lna)^n)
 


Abra sua conta no Yahoo! Mail - 1GB de espaço, alertas de e-mail no celular e anti-spam realmente eficaz.


No virus found in this incoming message.
Checked by AVG Free Edition.
Version: 7.1.385 / Virus Database: 268.5.1/326 - Release Date: 27/4/2006