[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Questão
- To: obm-l@xxxxxxxxxxxxxx
 
- Subject: Re: [obm-l] Questão
 
- From: Marcos Martinelli <mffmartinelli@xxxxxxxxx>
 
- Date: Mon, 12 Dec 2005 14:16:53 -0200
 
- DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws;       s=beta; d=gmail.com;       h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references;       b=jbdvjlrt9S48BHGJprNwfdOs6Aniv6HlCN0rSEsTappRf1H3u2i+B4jnKLnuJUlKxiDBt61Gq+gVFU9TcYgQrH9D4tjwp76N3jwL6YzLK3U4B6W+2HcYJ4khFY/vBDuUKtlu8KiwnDuv8zvb7Zwvrc63HuXuel7lBAveKN44EEs=
 
- In-Reply-To: <7ea558dc0512120728w556b4b09rae62735f6e55a44b@mail.gmail.com>
 
- References: <7ea558dc0512120728w556b4b09rae62735f6e55a44b@mail.gmail.com>
 
- Reply-To: obm-l@xxxxxxxxxxxxxx
 
- Sender: owner-obm-l@xxxxxxxxxxxxxx
 
Se a+b+c=0 -> a+b=-c -> a^2+2ab+b^2=c^2. Como a^2+b^2=1-c^2 -> 1-c^2+2ab=c^2 
-> c^2=(1+2ab)/2. Mas (a^2+b^2)^2=(1-c^2)^2 -> a^4+b^4+2a^2b^2=[(1-2ab)/2]^2 ->
a^4+b^4+2(ab)^2=[1-4ab+4(ab)^2]/4 -> a^4+b^4+2(ab)^2=1/4-ab+(ab)^2. Mas ainda temos que ab=c^2-1/2 -> a^4+b^4+(c^2-1/2)^2=1/4-(c^2-1/2). E então finalmente:
a^4+b^4+c^4-c^2+1/4=1/4-c^2+1/2 -> a^4+b^4+c^4=1/2.