[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] ideais maximais



Gostaria de uma ajuda no problema abaixo:

Seja C([0,1]) o anel da funções contínuas em [0,1],
com as operações (f + g)(x) = f(x) + g(x) e [f.g](x) =
f(x).g(x), para todas f,g em C([0,1]). Seja J o
conjunto de todas as funções f em C([0,1]) tais que
f(1/2) = 0. Prove que J é um ideal maximal.

grato desde já, éder.




	
	
		
Yahoo! Mail - Com 250MB de espaço. Abra sua conta! http://mail.yahoo.com.br/
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================