[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Cone Sul Q 2



Professor Márcio Cohen, outros professores, alunos, amigos,

      A resolução que segue é satisfatória?

      Desenhe-se  a  figura integralmente. A mesma é simétrica em relação à
  reta  PO, digo: com a movimentação de Q. Logo, é razoável pensar que esse
  ponto  fixo  é  a  intersecção de MN com PO, seja R tal ponto. Sim, O é o
  centro do círculo dado.
      Também por simetria, é razoável pensar que R é médio de MN. A questão
  então se resume a amarrar R às partes fixas (hipóteses do problema).
      Ora,  pontos  médios  de  segmentos (não de arcos) lembram, em regra,
  paralelogramos.   Se   provarmos  então  que  PMTN  é  paralelogramo,  (T
  intersecção de AB com PO), está resolvido o problema.
      Para  demonstrar  que  PMTN  é paralelogramo, muitas maneiras há, com
  igualdade de segmentos, de ângulos, o que parece mais fácil é esse último
  caso: igualdade de ângulos. Assim, tentemos demonstrar que NPT= PTM e que
  TPM = NTP (ângulos).
      PAM  =  PTM  (PMTA  é inscritível) e, tais ângulos são iguais ao arco
  menor QA/2 (PA é tangente ao círculo dado). Mas, XBT (X intersecção de BN
  com  PT)  tem essa mesma medida e é igual a XPN, pois os triângulos NPX e
  XTB  são semelhantes, o que se vê facilmente. Enfim, NPT = PTM (ângulos).
  Analogamente,  prova-se  que TPM = PTN. Logo, PMTN é paralelogramo, o que
  demonstra as suspeitas oriundas da simetria. (FIM).

      Na  realidade,  acredito  que  o  foco de minha dúvida restringe-se a
  saber  se  a  simetria,  conforme mencionada acima, efetivamente prova ou
  apenas levanta suspeita. E se assim, pode ser utilizada.

  ATT. João.




=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================