[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] matrizes



Title: Re: [obm-l] matrizes
Oi, Mario:

Reescreva A = A^1 como:

  |       1/2      -raiz(3)/2  |
2 * |                                   |  =
  |  raiz(3)/2        1/2      |

  |  cos(Pi/3)   -sen(Pi/3) |
2 * |                                   |
  |  sen(Pi/3)    cos(Pi/3) |

Facamos a seguinte hipotese de inducao:

                   |  cos(n*Pi/3)   -sen(n*Pi/3) |
A^n  =  2^n * |                                           |
                   |  sen(n*Pi/3)    cos(n*Pi/3) |


Assim, calculando  A^(n+1) = A * A^n e usando as formulas para sen(x +/- y) e cos(x +/- y), chegamos a conclusao de que:

                                 |  cos((n+1)*Pi/3)   -sen((n+1)*Pi/3) |
A^(n+1)  =  2^(n+1) * |                                                       |
                                 |  sen((n+1)*Pi/3)    cos((n+1)*Pi/3) |

ou seja, A^n tem a forma acima para todo n natural.

Logo, fazendo n = 2003 na expressao para A^n, teermos:

                               |  cos(2003*Pi/3)   -sen(2003*Pi/3) |
A^2003  =  2^2003 * |                                                     |
                               |  sen(2003*Pi/3)    cos(2003*Pi/3) |

Subtraindo  333*(2*Pi) = 666*Pi = 1998*Pi/3 de 2003*Pi/3, mantemos os senos e cossenos iguais, logo:

                               |  cos(5*Pi/3)   -sen(5*Pi/3) |
A^2003  =  2^2003 * |                                           |  =
                               |  sen(5*Pi/3)    cos(5*Pi/3) |

                 |       1/2        raiz(3)/2   |
=  2^2003 * |                                     |
                 |  -raiz(3)/2       1/2        |

                 |       1        raiz(3)   |
=  2^2002 * |                               |
                 |  -raiz(3)       1        |


Um abraco,
Claudio.

on 27.03.03 02:27, Mário Pereira at marioappereira@terra.com.br wrote:

Desculpem:

Sendo a matriz   A      


Calcule A elevado no expoente 2003



Mário


Mário