Bem, como o último algarismo deve ser par, então
vamos fixar, por exemplo, que o número termine em 8. Dessa forma há:
6 algarismos possíveis para as dezenas, restando 5 para as centenas e 4
para as unidades de milhar.
Pelo princípio fundamental da contagem, existem
120 (4*5*6*1) números possíveis terminados por 8, mas como há
3 algarismos pares. O número total será: 3*120 = 360.
Até breve !
Davidson Estanislau
-----Mensagem Original-----
De: Faelccmm@aol.com
Para: obm-l@mat.puc-rio.br
Enviada em: Quarta-feira, 15 de Janeiro de 2003 01:15
Assunto: [obm-l] combinações entre algarismos Porque a quantidade de números pares de 4 algarismos distintos que podemos formar com os algarismos 1,2,4,5,7,8 e 9 é 360 ? Obs: eu percebi que é 6!/2 mas isso foi por intuição, o que eu quero é chegar neste resultado (360) por vias lógicas. |